vmware

by Broadcom

Tanzu Greenplum
Streaming Server

Tanzu Greenplum Streaming Server 1.11

Tanzu Greenplum Streaming Server

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://techdocs.broadcom.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2025 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its
subsidiaries. For more information, go to https:/www.broadcom.com. All trademarks, trade names, service marks,
and logos referenced herein belong to their respective companies.

Tanzu Greenplum Streaming Server

Contents

VMware Tanzu Greenplum Streaming Server 1.x Documentation. 15

VMware Tanzu Greenplum Streaming Server 1.x Release Notes .16

Supported Platforms i il il s s 16
Release 1.1lttt iitttnnnneeneaaaeaeeeaaaanssnnnnns 16
Release 1.11.4 .. i ittt it st s e st s e e n s annn s nannnssnnnnsnnns 16
ResoIved ISSUES . . ittt i i i it i i it e e e i e i 16
Release 1.11.3 .. it it ittt ittt s et s e s s e s a st nananssannnsnnns 17
Changed Features i it ittt ittt sttt s s s s s e e e nnnnnnnnnnnnnnns 17
RESOIVEd ISSUBS . . vttt i i i i i i i i i e e ettt 17
Release 1.11.2 v i i ittt sttt sttt s s s s s s s s s s nnaaaannnnnnnnnnnnnnas 18
RESOIVEd ISSUBS . . .ttt i i i i i i i i i e e e ettt 18
S T T = O 18
RESOIVEd ISSUBS . . .ttt i i i i i i i i i e et ittt 18
Release 1.11.0 .o v v it i ittt e et m e s s s s mmn s s an s s nannnsnnnnnsnnns 18
New andChanged Features i vi ittt i nn e st tnnnnnnsssnnnnnnsss 18
Resolved ISSUBS & . i i ittt it it e it t s e s e 19
Release 1.10i ittt nansnennnnnneeansnnnssnnnnnss 19
Release 1.10.4 . . i i ittt sttt ettt s s e s s nmm e e e e e e e e e 19
Changed Features ... i i ittt ittt sttt s s s s s s s s e nannnnnnnnnnnnnns 20
RESOIVEd ISSUBS . . . ittt i i i i i i i i e e e et 20
Release 1.10.3 1 i ittt ittt sttt sttt s s s s s s s nnnnna e aa s 20
Changed Features i i ittt it it s s et e s m s n s nannnns 20
ResSOIVEA ISSUBS & v i i ittt ittt e st s e 21
Release 1.10.2 . i i ittt ittt sttt s st s s s s nm e m e a e e e e 21
ResOIVEd ISSUBS & v i i ittt i ittt st m e m e 21
Release 1.10.L o i i ittt i ittt sttt s s s s s s s s nnnnneaaaassnnnnnnnnnnnss 21
Changed Features i it ittt it i e s s s n s nnnnns 21
Resolved ISSUES . v v ittt i i i i i it i i e s a s 22
Release 1.10.0 . . v v ittt i s st sttt e e s e e s n e e e e e e e e e e 22
New and Changed Featurest nnnnnnrsrrnannnns 22
Release 1.9 ittt ittt e e aaaaeaeeaaaaaaannnnnns 23
New and Changed Featuresttt nnnnnnnsrrrannnnns 23
RESOIVEd ISSUBS . . . ittt i i i i i i i e e e ettt 24
Release 1.8ttt ittt ann s aanssseonnssannnsnnnnns 24
Release 1.8l .. i ittt ittt sttt s st s s e e e e mm e e e e e e e 24
Changed Features i oottt it i e s s s n s nnnnns 24
Resolved ISSUES . v v i ittt i it i it it rrrr e 24
Release 1.8.0 . . i ittt ittt ittt s e s s e n e e e e e e e e e e e e 25
New and Changed Featuresttt nnnnnnnssrrnannns 25
RESOIVEd ISSUBS . . . ittt i it i i i i i e e e ettt 26
Release 1.7 ittt sttt nsanannnnnsnnnnnnss 27
] L= T T I 0 27

Tanzu Greenplum Streaming Server

Changed Featureso ittt i i s s s e s nnnnns 27
Resolved ISSUES . . v v ittt i it i i it it s a s e 27
] LS T < 0 28
Resolved ISSUES & v v v ittt ittt i it i i 28

] L= T T I O 28
New and Changed Featuresttt nnnnnnnsrrrnnnnns 28
RESOIVEd ISSUBS . . . ittt i i i i i i it e e ettt 30
Release 1.6ttt ttennntsennssennsssennnssannnsnnnnns 31
Release 1.6.0 . i i i ittt ittt sttt st s s s s s n e mmma e e e e 31
New and Changed Featureso it n ettt nnn s s nnnnesns 31
BetaFeatures ittt ittt ittt s s s 32
RESOIVEd ISSUBS . . vttt i i i i i i i i e e e e ettt 32
Release 1.5 it ittt ittt sttt s s s s s nsannaaannnnnnnnnnnnss 33
Release 1.5.3 . . i ittt i it sttt ettt e e e e e e e e e e e e e e 33
Resolved ISSUES & v v v ittt ittt i it s 33
Release 1.5.2 . i i ittt ittt ittt e e e e e e e e e e e e e e e e e e 33
Changed Features u ittt ittt s s s s s annnnns 33
RESOIVEd ISSUBS . . i ittt i i i i i i i e e e it 34
Release 1.5, 1 . ..ttt ittt ittt s et s e n s e s aa e 34
Changed Features i i ittt ittt sttt s s s s s s s e e ennnnnnnnnnnnnnss 34
RESOIVEd ISSUBS . . vttt i i i i i i i i i e e et et e 35
Release 1.5.0 i i it i ittt sttt sttt s s s s s s s s s s s maa e s a s 36
New and Changed Featureso iiii ittt e s s s mannns 36
Resolved ISSUES & v v v vttt it i it i e 37
Release 1.4ttt ittt st aaeaaaaa e e e e eaaaaaaaannnnns 37
Release 1.4.3 . ..ttt ittt ettt e s s st s n e s s aaa s s asa s aannnsnnns 37
Changes @ v vt ittt st e et s s s e e 38
Resolved ISSUBS & v i i ittt ittt it i st s e s e 38
Release 1.4.2 v i ittt ittt sttt sttt s s s s s s s s aaa e e e 38
Changes & v vttt ittt i e et s s e s e 38
Resolved ISSUES v v vttt it ittt it e 38
] LS LY < 7 S 39

(00 7= T = 39
RESOIVEd ISSUBS . . . ittt i i i i i i i e e et ettt 39
Release 1.4.0 . . . v it ittt e et s e s st s man s aan s nasa s sannnsnnns 40
New and Changed Featuresttt i i esn s nannnnss 40
ResOIVEd ISSUBS & v i i i it ittt s e st m e s e 41
Deprecated Features ittt ittt e e et e e e nnnnnns 41
Removed Featureso i it ittt it i sttt s e s s e na s e s nnsnnns 41
Release 1.3ttt ittt ittt s s s s aanaaaaanannnnnnnnnnns 41
Release 1.3] . i i ittt ittt sttt e e s e e n e m e e m e e e e e e 41
Resolved ISSUES & v v v ittt ittt i i i i 41
Release 1.3.0 . i i ittt ittt et ettt e s s s e e e e e m e e e e e e 42
New and Changed Featuresttt nnnnnnnsrrrannnnns 42
RESOIVEd ISSUBS . . .ttt i i i i i i i it e e e ettt 42
BetaFeatures ittt entanentansansansansnns 43
Deprecated Features ittt innenrtrtrtnnnnnerrtnnnnnnssnn 43

Tanzu Greenplum Streaming Server

Knownlilssuesand Limitationsttt inennnnnnnnnnns 43

Overview of the VMware Tanzu Greenplum Streaming Server ...45

Architecture i i ettt 45
Installing the VMware Tanzu Greenplum Streaming Server 47
About the Download Packagest nnnrnns 47
Downloading a GPSS Installerttt 47
Prerequisitest i i it sttt s 49
Installingthe GPSS gppKg . . - .. .t ittt it i e sttt e e s n e 49
Installingthe GPSS Tarball ittt ettt anssnn 50
Installing the GPSS ETLPackaget nnnnnnnsnn 50
Inspecting the QuickstartGuide i ittt 51
Upgrading the VMware Tanzu Greenplum Streaming Server 52
Stepl: GPSS Pre-Upgrade Actionst nnrrrnnnnnns 52
Step2: Upgrading GPSS it ittt et e 53
Configuring and Managing the VMware Tanzu Greenplum
Streaming Servert it e e e 57
Prerequisitesttt et i e 57
Registeringthe GPSS Extension ittt neertrtnnnnnnnsnn 57
Configuring the Tanzu Greenplum Streaming Server..................... 58
Running the Tanzu Greenplum Streaming Server i 59
AbOUt GPSS LOgQging i ittt ittt it m s st n s 59
Managing GPSS Log Filesttt it a s 60
Configuring Per-Run Server Log Filest i it i i e n e as 61
Rotating the GPSS Server Log Filettt ittt i i e s e s nnnns 61l
Configuring Automatic Server Log File Rotation 61
Rotating the Server Log File On-Demando ittt e et s v i nnnnes s 62
Integratingwithlogrotate ittt ittt an s 62
Monitoring GPSS Servicelnstancesttt nnnnnnnnnnnnans 63
About GPSS JobManagement ittt i 63
Shadowing the VMware Tanzu Greenplum Password 63
Pulling Information from the Debug Server i 64

Configuring VMware Tanzu Greenplum Streaming Server for

Encryption and Authentication oo 65
Configuring gpss and gpkafka for TLS-Encrypted Communications with Kafka 65
Configuring gpss for TLS-Encrypted Communications with RabbitMQ 66
Configuring gpss and gpkafka for SSL-Encrypted Communications with
Greenplum, i e e e e 67

Configuring SSLfortheDataChannelottt i ittt i sttt s st e s a s 67
Configuring SSL for the Control Channelot i it it e e a s 67
Configuring gpss and gpsscli for Encrypted gRPC Communications 68
Configuring gpss and gpkafka for Kerberos Authentication to Greenplum ... 69
Configuring gpss for Kerberos AuthenticationtoKafka 69
Configuring gpss for LDAP AuthenticationtoKafka 70

Configuring the Streaming Server for Client-to-Server
Authentication i i i i et e e e naas 70

Tanzu Greenplum Streaming Server

Enabling Prometheus Metrics Collection 71
Prerequisites ittt ittt it aaa e e eeaa s 72
Enabling Prometheus Integration with GPSS 72
Viewing GPSS Metricsttt ittt ettt s n e 73

About Loading Data with VMware Tanzu Greenplum Streaming

Y =] /=1 74
Constructing the Load ConfigurationFile 74
Creating the Target Greenplum Table s, 75
Configuring VMware Tanzu Greenplum Role Privileges 75
Runningthe Clientt i e e 75

Using the gpsscli Client Utility ittt ittt i ittt s s nnnas 76
About the gpsscliReturn Codes . .. oo i it ittt i et s e s e s n s 77
About GPSS Job Identification v i it ittt i i 77
About External Table Naming and Lifecycleo i i i i i e e nn 77
Submittinga Job ... i ittt i i i i s e 78
Starting a Job .« v v i e e e e 79
Checking Job Status, Progress, History i ittt it i i i i i n s 79
WaitingforajobtoComplete v v vttt it ittt e s 80
15 0] o] o] 1 T J= T Lo o 1 80
Removinga Job ..o i ittt i i i i i i s 80
Running a Single-Command Load« i it i ittt i i s s e nmennn s 81
About GPSS Job Initiationand Schedulingt ittt 81
About Registering for Job Stopped Notification 81

Checking for Load Errors:i ittt nnnnnnsrrnnnnnnsssnnns 82

Examining GPSS LOg Files . . v v it v i it e i e i e i it e 82

Determining Batch Load Status v v i it it i i et st s s e s e e s 82

Diagnosingan ErrorwithaTrial Load ... v v v e it i i i e e st s na s s s nnnnns 83

Readingthe Error Log -« v v v v v i i it it e et s s e e st s m s s nnnnns 83

Auto-Restartinga Failed Job ...ttt i ittt e i 84

Redirecting Data to a Backup Table when GPSS Encounters Expression Evaluation

0] £ 85

Preventing External Table ReUSE . . v o v v i i it it et it s e s s s s m e nnn e 86

Understanding Custom Formatters 0, 86

Developing a Custom FormatterforGPSS i iiiinennaan 86
About DataBoundaries . . . v oottt ittt i s e a s 87
HandlingBad Data . ..« v v v vttt st s s et st s a e s st n s nn s nnnnnns 87
KNOWN ISSUBS & v i vt i i it i it et m e s s s m s m s s a s s e s nnsnnns 87
Building the Custom Formatter Shared Library withPGXS 87
Registering the Custom Formatter Function with Tanzu Greenplum 88

Using a Custom Formatterin GPSS ¢ ittt nnnenrsnn 88

Understanding Transformer Plugins 89
Developing a Transformer Plugin for GPSS it ran 89
Using a Transformer Plugin in GPSS i iinanrnns 20

Understanding UDF Transformers oo, 20
Developing a UDF Transformerfor GPSS ¢ ittt nnnennnan 90
Using a UDF Transformerin GPSSttt 91

Tanzu Greenplum Streaming Server

EXample e e e e e e e 91
Loading Kafka Data into Greenplum00, 93
Requirementsttt nnrnns 93
Load Procedurec it iiinn et nn et 93
PrerequUISites . o it e e e e e e e e 94
About Supported Kafka MessageDataFormats v v v i i i i it i i i i i i 94

Yo 95

2 1 = 95

015 95

L1153 o o 95
Delimited Text .. v vi i ittt it ettt a e s st na s s s ann e 96

JSON (singleobject) v v v v ittt ittt ittt i i ettt s e n st s ann s 96

JSON (singlerecordperling) . v« i i ittt i i i s s s s s i s s s st s s aa s 97

About Multiple-Line Kafka MesSsages . .« v v v v v it vt et s et s e s m s nnne s 97
Registeringa Custom Formatter ittt ittt nnnnas 97
Constructing the gpkafka.yaml ConfigurationFileo ii i e it nnnn 97
Tanzu Greenplum Options (Version 2-Focused) .« v v v v v v v v v v v v v s s e e e n s s 99
KAFKAIINPUT Options v v ittt et i et s e sna st nn s saassnnssnnnsnnss 99
KAFKA:OQUTPUT OPtioNS &« v v v v v s e ettt s s s a s s st nnnansnsnnnnnssss 100

Loading to Multiple Tanzu Greenplum Tables, 100
Aboutthe Merge Load Mode . . . v v it i i it it s i et s e s 100

(0 =T] o] o] o 1 101

About KEYs, VALUES, and FORMATS . . vt v e ettt v s s s e nsnnnnnnnnssnnns 101

About the JSON Formatand Column Type .+« v v v v vt it et n s naa s 102

About Transforming and Mapping Kafka InputDatao v e i v i i i o v a s 103

About Mapping Avro Bytes Fields to Base64-Encoded Stringso v v v v v v u 104
Creatingthe Greenplum Table v v i i ittt it i i s s s s s s nnnnns 105
Running the gpkafka load Commandttt e eerrnnnnns 105
Configuring the gpfdist Serverinstance ittt ittt nnnns 106

About Kafka Offsets, Message Retention, and Loadingcc..... 106
Checking the Progress of aload Operation« ottt i i ittt i i i i nn s 107
Understanding Kafka Message Offset Management 108
Legacy CONSUMEL . .. it v v vt v vt st s s s s s s snsnssssssssnssnsssnsns 108
High-Level Consumerttt nnmrnnesnnarnnnsnnssns 108
SUMMANY . ..ttt ittt it i s n s s s st n s a s st anan s annnnsssnnnnnns 108
Accessing an SSL-Secured Schema Registry 109
About the Configuration Propertiest nnan 109
Additional Considerations ittt neart s nnns 110
EXamples s e i s 110
Loading CSV DatafromKafka it 110
Prerequisites i i i ettt 110
Procedure ittt tnnnnnrrrrannansrrnannnnsrannnnnns 111
Loading JSON Data from Kafka (Simple) 114
Prerequisitesttt ittt i s 114
Procedure ittt ttnnnnns st nananstaannnnsaannnnns 114

Tanzu Greenplum Streaming Server

Loading JSON Data from Kafka (with Mapping) 117
Prerequisites0 ittt ittt st a s s aa e e aa s nnns 117
Procedure ittt tnnnnnr i rtaanaas i annnnsannnnns 117

Loading Avro Data from Kafka oL 120
Prerequisites i it et et 120
Procedure 000ttt itt ittt aa s 120

Loading JSON Data from Kafka Usinggpsscli 123
Prerequisites ittt it i s 124
Procedure ittt nnnnas st nnnansttaannnnsnannnnns 124

Merging Data from Kafka into Greenplum Using gpsscli 127
Prerequisites ittt ittt ittt s s s s a s e naeaannnsnnnnnns 128
Procedureiii ittt tnnnnar it tannaas s aana s annnnns 128

Custom FormatterforKafka............... ... o i, 131
Procedure ittt tnnnnartrttaanansttaannnasannnnns 132

Best Practices ... i i it i et e 140
Choosinga CommitThreshold ¢ ittt nnns 140

Loading File Data into Greenplum00, 142
Load Procedurei ittt tnnnnars st nnnanstaa s 142

Prerequisites « v v v ittt ittt i e e e e 142
About Supported DataFormats u i i ittt ittt sttt st s a s 142
Constructing the filesource.yaml Configuration File ¢ it iinnnns 143
Tanzu Greenplum Options (Version 2-Focused) i ittt i i nnnnas 144
T o1 o o 1= 144
FILE:OUTPUT OptioNS v v v v v v v v vt s s s s s s s nmnnnnnnnnnnnnnnnnnnnnnss 145
AbouttheMergeload Mode it i i ittt i s st s s nnn s nnns 145
About the JSON Formatand Column Type . . .« o v v i i e i it i e i e e e e e e n s 146
About META, VALUES, and FORMATS . . ittt vttt vt a st n e s s an s nnnnnnns 147
About Transforming and Mapping InputData« it i e i nnennn 147
Creatingthe Greenplum Table ittt ittt ittt n s 148

Loading from S3 into Greenplum (Beta) 149

Load Procedureottt tnnnnnr s nnnnnsrrnannnnsrannnnnns 149
Prerequisites « v v v it ittt i i e e e e e 149
About Supported File Formats u i ittt i i sttt st s s 150
Constructing the s3source.yaml ConfigurationFile v o v v v v v i ettt i n i ns 150
Creatingthe Greenplum Tablettt i it it s s e s s nnans 151

Loading RabbitMQ Data into Greenplum 152

Load Procedurettt tiinn ettt e e 152
Prerequisites . v v i ittt i i i i i e e e r e E e e e e 152
About Supported Message Data Formats oot i i it ettt nnn ey 153

2 0 = 153
015 153
{11153 0 o 153
Delimited Text .. v v i ittt it ittt st sttt nan s st an s n e 153
JSON (singleobject) v v v v v v vttt i sttt st e s s s s na s 154

Tanzu Greenplum Streaming Server

JSON (singlerecordperling) v v v oo i it i e ettt i e e s s s e n s nnns 155
Registeringa Custom Formatter ittt it i n s 155
Constructing the rabbitmqg.yaml ConfigurationFile 155

Tanzu Greenplum Options (Version 2-Focused) i ittt i i i i i nnnnas 156

RABBITMQ:INPUT OptioNS &« v v v it i i i e e et n e s e na st nmssnan s nmnnnnss 156

RABBITMQ:OUTPUT OpLiONS « v v v vt vttt e vt s s et s s e sn e asnannnnsns 157

Loading to Multiple Tanzu Greenplum Tables ittt iinnnnnsans 158

Aboutthe Mergeload Mode it e ittt i e s s s e n s nnns 158

1 7= o] o 1= 158

About the JSON Formatand Column Type . . .« o v v i it e et i e i i e e e n s 159

About Transforming and Mapping RabbitMQ InputData, .. 160
Creatingthe Greenplum Table v i ittt e i et e s e e annnns 160
About RabbitMQ Stream Offsets, Message Retention, and Loading 160

Understanding RabbitMQ Message Offset Management 161
RabbitMQ Propertiest ittt ittt sttt s s s s s s nnnns 161
GPSS Propertiesttt st 162
SUMMANY . ..ttt ittt ittt nn s e n st s aa s a s st ansn s annnnsssnnnnnns 162

Unloading Data from Greenplum oo, 163

Unloading File Data from VMware Tanzu Greenplum 163
Unload Procedure ittt ernnernnernnnsnnnsns 163

PrerequISites . v vttt e e e e e e e 163
About Supported DataFormatsi i i ittt ittt vttt st s 164
Start the Tanzu Greenplum Streaming Server i et n e ennnrnas 164
PreparetheDatatoUnload . . v v v v v ittt ittt st s s s i nn s 164
Construct the unload configurationfilet i it e e as 165
Use the gpsscli Client Command toUnloadtheDatao nu 167
Other Considerationsttt atrtnarrnnnrnns 168

Utility Reference it i 169

e T o 13 170
SYNOPSIS - v it ittt i i e e e e e 170
Descriptionttt ittt 170
OPtIONS i i e e e 170
EXampleso it e e e e e e 171
See AlSOttt e E e e e ey 171

OPSS SO - . ittt ittt i i 171
SYNOPSIS . ittt vttt ettt e e e e e e e 172
Descriptionttt i i e 173
Keywords and Valuest tinnnnnrrrtnnnnnnsssnnnnnns 173
Notes i i it s i s s s e s 176
EXamplesttt ittt e e 176
See AlSOttt r e e 177

gPSSCli ... s et e e s 177
SYNOPSIS - v ittt ittt a e e 177
Descriptionttt i e e 177

Tanzu Greenplum Streaming Server

OPtioNSttt i i e e e e 178
SEe AlSO ... it e e e e 179
gpsscliconvert i e 179
SYNOPSIS . .ttt ittt it i e e e e e 179
Descriptiont it e e 180
OPtioNS it i i e e e 180
EXamplest it i e e e e e e 180
See AlSO it e e e e e 180
gpssclidryrun i i 180
R £ Lo J 1= 180
Descriptionttt ittt e i 181
OPtIONS i i i e e 181
EXamplesttt ittt ittt 182
SEe AlSO e e 182
gpssclilist............ . i i e e 182
SYNOPSIS - v ittt ittt a e e 183
Descriptionttt i e e 183
£ o1 o] o T 183
EXamples e e e e 184
SEe AlSO ... it e e e e 184
gpsscliload i e 184
SYNOPSIS . . ittt it ittt e e e e e e e 184
Descriptiont it e e s 185
OPtioNSt i i e e e 185
EXamplesttt it i e e e e e 188
See AlSO e e e e e 188
gpsscli progress i i i s s 188
R £ Lo J 1= 188
Descriptionttt ittt ittt 189
OPtiIONS i i i i e e e 189
EXamplesttt ittt 190
SEe AlSO e e 191
gpsscliremove e e 191
SYNOPSIS - v ittt ittt e e e e 191
Descriptionttt i e s 191
£ o1 o] o T 191
EXamples e e e s 193
SEe AlSO ... it e e e e 193
gpssclishadow i e 193
SYNOPSIS . ittt ittt it e e e e e 193
Descriptiont it e s 193
OPtioNSt i i e e e 193
EXamples ittt it i e e e e e e 194
See AlSO e e e e e 194

Tanzu Greenplum Streaming Server

gpssclistart e 194
SYNOPSIS . ittt i i it ettt e e e e e e a e 194
Description ittt it e e 194
OptioNs ittt i i i i i e e 195
EXamplesot e e e e e 197
SEe AlSOt e e 197

gpssclistatus i 197
SYNOPSIS . i ittt it ittt e e e 197
Descriptionttt 197
OPtioNS ittt ittt e e e 198
EXamplesttt ittt it e e e 199
See AlSOttt i e e e e 199

gpsSCli StoP ... o e 199
SYNOPSIS . i ittt i i ittt e e e s e e e e 199
Description ittt ittt e 199
OPtioNs ittt it s i e e 200
EXamples i i it e e e e e e 201
SEe AlSO ... i e e a e e e 201

gpssclisubmit 201
SYNOPSIS . ittt ittt it e e e e e e e 201
Description it i e 201
OptioNs ittt i i i i i e e 202
EXamplest s e e e e e 204
SEe AlSO ... it e e 204

gpsscliwait e 204
SYNOPSIS . ittt ittt it e e e e e 204
Description ittt ittt i 204
OPtioNS ittt i et e e e 204
EXamples ittt ittt e e e 205
See AlSOttt i e e e e e 206

gpsscli.yaml i e 206
title: gpsscli.yaml e e s 206
SYNOPSIS . ittt ittt i e e e e 206
Descriptionttt i e e 206
Keywords and Valuest arrrnnnnnnsssnnnnnns 207
Template Variables i eiin i 208
EXamples e e e e e 209
SEe AlSO ... i e e e e 209

gpsscli-v3.yaml ... e 209
SYNOPSIS . ittt ittt it i a e e e e e e 209
Description it it e e 212
Keywords and Valuest netrrnnnnnnsrsnnnnnns 212
Template Variablest it e 216
Notes it ittt ittt st s s e s 216
EXamples ittt ittt sttt a e e 217

Tanzu Greenplum Streaming Server

See AlSO e e a e s 217
gpkafka e 217
SYNOPSIS - v ittt it i e i e a e e 217
Descriptionttt i 218
OPtIONS i i i e e e 218
See AlSO it e e s a ey 218
gpkafkaload i e 218
SYNOPSIS . . ittt ittt e e s e s 219
Description ittt ittt i 219
OPtioNS ittt i ittt e e e 219
EXamples ittt ittt e e e 222
SEe AlSO a e 222
gpkafka-v3.yaml e 222
SYNOPSIS - v ittt it i e e e 222
Descriptionttt i i e 225
Keywords and Valuesii e nnernnernnnsns 226
Template Variablesttt 236
Notes i i i i ettt s s i s 236
Kafka Properties ittt it ittt st a s 237
EXamples ittt ittt s 237
SEe AlSO a e e e 238
gpkafka-v2.yaml e e 238
SYNOPSIS - & ittt it i e e e 238
Descriptionttt i i i s 241
Keywords and Values e nnernnnrnnnsns 242
Template Variablesttt nnnns 253
Notes i i i st s s s s 253
EXamples i e e e e e 254
SEe AlSO ... it e e e e 255
gpkafka.yaml i e 255
SYNOPSIS . . ittt it ittt a e e e e e e 255
Descriptionttt i i e e 256
Keywords and Valuesttt nnrrnnnnnnsrrnnnnnns 257
Notes i i i i i ittt i s s i s 262
EXamplesot e e e e 262
SEe AlSO ... i e a e e e 263
filesource-v3.yaml e e 263
SYNOPSIS . ittt it ettt e e e e e e e e 263
Descriptionttt it i 266
Keywords and Valuest nnrrrnnnnnnsssnnnnnns 266
Template Variables ittt e nanens 274
Notes it i i i i it s st s s 274
EXamples oottt it i e e e e e e 274
See AlSO it e e e a s 275

Tanzu Greenplum Streaming Server

filesource-v2.yaml ... i e 275
SYNOPSIS . - ittt it ettt e e e e e e a e 276
Description ittt it e e 277
Keywords and Valuest innnnnrrrnnnnnnsssnnnnnns 277
Template Variables ittt e 284
Notes i i i i s s s s s 284
EXamples e e e e e e 285
See AlSOttt e e e e 286

rabbitmg-v3.yaml e 286
SYNOPSIS . . ittt ittt i e e e e s e 286
Description ittt ittt e 289
Keywords and Valuest ernnernnnrnnnsns 289
Template Variables ittt 298
Notes i i it st s s s s 299
EXamples ittt ittt e 299
SEe AlSO e e 300

rabbitmg-v2.yaml 300
SYNOPSIS . ittt ittt it e e e e e e e e e 300
Descriptionttt i i i e 303
Keywords and Valuesttt innnnnrrrtnnnnnnsssnnnnnns 303
Template Variablest ittt a s nnnens 312
Notes i i it i st s s s 312
EXamplest i e e e e e e 313
SEe AlSO i e e e 314

s3source-v3.yaml (Beta) i i i i 314
SYNOPSIS . .ttt ittt it i a e e e e e 314
Description¢¢ ittt ittt i i e s 316
Keywords and Valuesttt nnnnnarrsnnnnnns 316
Template Variables it 321
Notes i ittt it s s e s 321
EXamples ittt ittt e 322
SEe AlSO a e 323

unload-file-v3.yaml i i e e 323
SYNOPSIS - v it ittt i e e e e 323
Descriptionttt i i s 324
Keywords and Values it titinnnnnrsrrnnnnnnsrssnnnnnns 324
Template Variablest ittt aannnnns 328
Notes i i ittt i st s s s 328
EXamplesot it e e e e e 329
SEe AlSO ... i a e e e 331

Developing a VMware Tanzu Greenplum Streaming Server

@ 7= 5 T 332

Developing to the GPSS BatchData API........................ 332

GPSS Batch Data API Service Definition 332

Tanzu Greenplum Streaming Server

Data Type Mappingccit ittt nnnnnsrsnnnnnnsssnnnnnns 338
Setting up a Java Development Environment 339
Prerequisites il i it e s 339
Example Procedure forjava it iiiiiiineennnnnnnnnnnns 339
Generating the Batch Data API Client Classes 340
Coding the GPSS Batch Data Client 340
Connectingtothe GPSS Server ittt 341
Connecting to VMware Greenplum 341
Retrieving Greenplum Schema and TableInfo 343
Listing the Schemas inthe Database 343
Listingthe TablesinaSchema ittt ettt nnnnnns 344
Acquiring the Column DefinitionsofaTable 345
Specifying and Preparing a Greenplum Table for Writing 346
Sample Codettt it i e e 347
Writing Data to a Greenplum Table 348

Tanzu Greenplum Streaming Server

VMware Tanzu Greenplum Streaming
Server 1.x Documentation

This documentation describes how to install, configure, manage, and perform ETL operations with the
Tanzu Greenplum streaming server.

Key topics in the Tanzu Greenplum streaming server documentation include:

Release Notes

Overview of the Tanzu Greenplum Streaming Server

Installing the Tanzu Greenplum Streaming Server

Upgrading the Tanzu Greenplum Streaming Server

Configuring and Managing the Tanzu Greenplum Streaming Server
About Loading Data with the Tanzu Greenplum Streaming Server
Loading Kafka Data into Greenplum

Loading File Data into Greenplum

Loading from S3 into Greenplum (Beta)

Loading RabbitMQ Data into Greenplum

Unloading Data from Greenplum

Utility Reference

Developing a Tanzu Greenplum Streaming Server Client

Tanzu Greenplum Streaming Server

VMware Tanzu Greenplum Streaming
Server 1.x Release Notes

This document contains pertinent release information about the VMware Tanzu Greenplum streaming server
version 1.x releases. The Tanzu Greenplum streaming server (GPSS) is included in certain VMware Tanzu
Greenplum 5.x, 6.x, and 7.x distributions. GPSS is also updated and distributed independently of VMware
Greenplum. You may need to download and install the GPSS distribution from Broadcom Support Portal to
obtain the most recent version of this component.

Supported Platforms

VMware Greenplum Streaming Server 1.x is compatible with these Operating System and VMware
Greenplum versions:

GPSS . .
i OS Version VMware Greenplum Version

Version

all RHEL 6.x, CentOS 6.x, RHEL 7.x, CentOS 7.x 5.17.0+ (up to GPSS 1.10.4),
6.x

1.6.0+ Ubuntu 18.04 LTS 6.x

1.7.0+ OEL 7.x, RHEL 8.x 6.x

1.7.0 to Photon 3 6.x

1.10.4

1.10.3+ RHEL 8.7+, Rocky Linux 8.7+, OEL 8.7+ using Red Hat Compatible Kernel 7.

(RHCK)
1.10.4+ RHEL 9, Rocky Linux 9, OEL 9.x using Red Hat Compatible Kernel (RHCK) 6.x, 7.x
ﬁ Starting from version 1.11, Greenplum Streaming Server does not support VMware

Greenplum 5.x nor Photon 3.

Release 1.11

Release 1.11.4

Release Date: January 09, 2025

Greenplum Streaming Server 1.11.4 includes resolved issues.

Resolved Issues

16

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Greenplum%C2%AE%20Streaming%20Server

Tanzu Greenplum Streaming Server

Greenplum Streaming Server 1.11.4 resolves these issues:

N/A

N/A

N/A

N/A

N/A

Resolves an issue that greenplum fdw is using the backend version of 1ibpg by linking to the
frontend version statically. This ensures that the frontend version of 1ibpq is utilized, allowing
connections initiated by GreenplumFDw to be correctly identified as remote.

Resolves an authentication failure issue in gp2gp if local GPDB cluster and remote GPDB cluster
has the same hostname and port. Now, GPSS uses |IP address to connect to endpoints in the
remote GPDB segment instead of hostname.

Resolves unexpected outputs from the dryrun command when handling SQL queries containing the
% character.

Automatically create the history table during gpssc1i dryrun to resolve the "relation doesn't exist"
error.

Resolve the mismatch between GPSS Prometheus metrics and the actual job status following job
restoration.

Release 1.11.3

Release Date: August 05, 2024

Greenplum Streaming Server 1.11.3 includes changes and resolves issues.

Changed Features

Greenplum Streaming Server 1.11.3 includes these changes:

Greenplum Streaming Server introduces an optimized progress log policy that creates one log per
job per day with daily rotation.

The gpsscli progress command now displays progress info in inline mode with an added --
scrolling option to maintain the previous output format.

Greenplum Streaming Server enhances gpsscli 1ist output by adding a space between columns
for better readability.

Greenplum Streaming Server improves version verification by ignoring patch version differences
when checking the gpss executable and related extensions.

Greenplum Streaming Server now supports RabbitMQ jobs with SSL for stream mode with the
following updates:

o Upgraded rabbitmg-stream-go-client to version 1.3.0.
o Upgraded rabbitmg-server to 3.12.10-1 in Docker images.

o Updated sourceReader to use the new setsaslConfiguration for passwordless SSL
authentication.

Resolved Issues

17

Tanzu Greenplum Streaming Server

Greenplum Streaming Server 1.11.3 resolves these issues:

35370903
Resolves a panic issue triggered by closing the Kafka consumer multiple times.
N/A
Resolves an issue where stopping a job manually was logged as an ERROR instead of 1nFoO.

Release 1.11.2

Release Date: May 17, 2024

Greenplum Streaming Server 1.11.2 resolves a single issue.

N/A
Resolves an issue where setting the comvrT.MINIMAL INTERVAL YAML configuration parameter
when working with RabbitMQ data could result in data loss.

Resolved Issues

Greenplum Streaming Server 1.11.1 resolves a single issue:

378679
Resolves an issue where, when using Streaming Server Monitor from Greenplum Command Center,
Streaming Server routines experienced memory leaks.

Release 1.11.1

Release Date: May 03, 2024

Greenplum Streaming Server 1.11.1 resolves a single issue.
Resolved Issues

Greenplum Streaming Server 1.11.1 resolves a single issue:

378679
Resolves an issue where, when using Streaming Server Monitor from Greenplum Command Center,
Streaming Server routines experienced memory leaks.

Release 1.11.0

Release Date: January 8th, 2024

Greenplum Streaming Server 1.11.0 adds new features, includes changes, and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.11.0.

New and Changed Features

Greenplum Streaming Server 1.11.0 includes these new and changed features:

18

Tanzu Greenplum Streaming Server

Greenplum Streaming Server now supports unloading data from your VMware Greenplum to a file.
See Unloading File Data from Greenplum for more details.

The gpsccli utility introduces a new option --daemon to run Greenplum Streaming Server as a
daemon. See the gpsscli reference page for mode details.

Greenplum Streaming Server now supports loading RabbitMQ data to multiple VMware Greenplum
tables.

You may now find the Greenplum Streaming Server job name under the application name column
in the pg stat activity system view of your VMware Greenplum.

Greenplum Streaming Server creates a directory $GPHOME/docs/cli help/gpss during its
installation, which provides a quick start guide with useful information and examples to set up load
jobs, along with sample configuration files.

The version 3 of the YAML configuration file is no longer Beta, it is promoted to a supported
feature.

The option max restart time in the YAML configuration file now has a new value, -1, which
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

Greenplum Streaming Server improves the performance of the MERGE mode for heap tables by
leveraging UPSERT, introduced by VMware Greenplum 7.0. You should expect performance
improvements if you are using GPSS with VMWare Greenplum 7.0 or later.

Resolved Issues

Greenplum Streaming Server 1.11.0 resolves these issues:

33146

N/A

N/A

N/A

Fixes a memory leak issue when loading Kafka data and running gpsscli monitor.

Resolves an issue where jobs with multiple outputs mapping errored out with "ParseConfigContent
failed: yaml: unmarshal errors: line 77: cannot unmarshal !!map into

[Ishared.ColumnMap"

Resolves an issue where the alert parameter in the YAML configuration file did not take effect for
File and RabbitMQ jobs.

Resolves an issue where a job failed to start, and if configured to retry, the retry caused GPSS to

panic with error runtime error: invalid memory address or nil pointer dereference.

Release 1.10

VMware Greenplum Streaming Server version 1.10.x is the last version that supports
VMware Greenplum 5.x.

Release 1.10.4

19

Tanzu Greenplum Streaming Server

Release Date: November 1, 2023

Greenplum Streaming Server 1.10.4 includes changes and resolves issues.

n You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.10.4.

Changed Features

Greenplum Streaming Server 1.10.4 includes these changes:

e Version 1.10.4 adds support for Red Hat Enterprise Linux 64-bit 9, Oracle Linux 64-bit 9 using the
Red Hat Compatible Kernel (RHCK), and Rocky Linux 9 for VMware Greenplum version 6.x and
7.X.

¢ To alleviate possible data skew, GPSS changes the distribution key that it uses for its Kafka

history tables.

Resolved Issues

Greenplum Streaming Server 1.10.4 resolves this issue:

33098
Resolves an issue where GPSS lost retry information for jobs that were manually stopped and then
restarted. This resulted in GPSS returning the warming retry job <jobname> is disabled, stop
schedule and exiting a job when a primary VMware Greenplum segment went down. GPSS now
explicitly retains the retry configuration for manually stopped jobs, enabling it to better tolerate a
segment failure and mirror switch over.

Release 1.10.3

Release Date: September 21, 2023

Greenplum Streaming Server 1.10.3 includes changes and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.10.3.

Changed Features

Greenplum Streaming Server 1.10.3 includes these changes:

¢ The per-run, job-specific server log file now includes the YAML configuration used to submit the job
and the job status at completion. You can find the YAML configuration in a log message prefaced
with start job. The job status log message is prefaced with job finished.

e Version 1.10.3 adds support for Red Hat Enterprise Linux 64-bit 8.7+, Oracle Linux 64-bit 8.7+
using the Red Hat Compatible Kernel (RHCK), and Rocky Linux 8.7+ for VMware Greenplum
version 7.0.0.

20

Tanzu Greenplum Streaming Server

* Shadowed passwords are now supported for LDAP user accounts.
Resolved Issues

Greenplum Streaming Server 1.10.3 resolves these issues:

33015
Resolves an issue where GPSS returned a Resource temporarily unavailable error due to a
resource leak that occurred when it repeatedly retried a Kafka job that consumed illegal JSON.
GPSS now ensures that it releases all connections to Kafka when it detects an offset gap.
32935
The per-run, job-specific server log file did not include enough information about the job. GPSS
version 1.10.3 adds the job YAML configuration and the job status at completion to the log file.

Release 1.10.2

Release Date: July 27, 2023

Greenplum Streaming Server 1.10.2 resolves an issue.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.10.2.

Resolved Issues

Greenplum Streaming Server 1.10.2 resolves this issue:

32960
Resolves an issue where GPSS returned a value out of range error when the object identifier of
the target VMware Greenplum table was larger than 2432. GPSS now checks for the existence of the
target table rather than attempting to access the table's object identifier.

Release 1.10.1

Release Date: June 9, 2023

Greenplum Streaming Server 1.10.1 includes changes and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.10.1.

Changed Features

Greenplum Streaming Server 1.10.1 includes these changes:

e The per-run, job-specific server log file name is changed from gpss-<jobname> <timestamp>.log

to gpss_<jobname> <timestamp>.log.

21

Tanzu Greenplum Streaming Server

The user name and password are now optional components of the RabbitMQ seErRVER and server
(version 3 (Beta)) load configuration file properties.

GPSS supports TLS encryption only when loading from a RabbitMQ queue. GPSS does not
support TLS encryption when loading from a RabbitMQ stream.

Version 1.10.1 adds support for Red Hat Enterprise Linux 64-bit 8.7+, Oracle Linux 64-bit 8.7+
using the Red Hat Compatible Kermnel (RHCK), and Rocky Linux 8.7+ for VMware Greenplum
version 7 Beta 4+.

Resolved Issues

Greenplum Streaming Server 1.10.1 resolves these issues:

N/A

N/A

N/A

Resolves an issue where, when loading from RabbitMQ, GPSS returned a vague error when the
VMware Greenplum table specified in the load configuration file did not exist. The message now
more accurately reflects the error condition.

Resolves an issue where GPSS did not direct certain log messages to the appropriate per-run, job-
specific server log file. GPSS now correctly routes these messages.

Resolves an issue where certain messages in the per-run, job-specific server log file were missing
the job identifier. These log messages now include the job id.

Release 1.10.0

Release Date: May 15, 2023

Greenplum Streaming Server 1.10.0 adds new features and includes changes.

This version of the VMware Greenplum Streaming Server documentation replaces the term
master with the term coordinator.

You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.10.0.

New and Changed Features

Greenplum Streaming Server 1.10.0 includes these new and changed features:

GPSS updates the go library dependency to version 1.19.1.

GPSS introduces support for TLS encryption to RabbitMQ. Refer to Configuring gpss for TLS-
Encrypted Communications with RabbitMQ for more information.

GPSS v1.10.0 includes these logging-related changes and new features:

22

Tanzu Greenplum Streaming Server

o Version 1.10.0 changes the naming format of GPSS server log files. Previous versions of
the server log file name included a date. The new naming format replaces the date with a
timestamp that specifies the day and time including milliseconds. Refer to Managing
GPSS Log Files for more information. (Upgrade actions may be required as described in
Upgrading the Streaming Server.)

o Log messages that GPSS writes to server log files now include the job identifier (truncated
to 8 characters).

o You can direct GPSS to automatically rotate the server log file on an hourly or daily basis
by setting the new L.ogging:Rotate property in the gpss.json server configuration file. See
Configuring Automatic Server Log File Rotation for more information about this new feature.

o You can direct GPSS to create per-run server log files for each job by setting the new
Logging:SplitByJob property in the gpss.json server configuration file. Refer to
Configuring Per-Run Server Log Files for more information.

The GPSS gRPC Batch Data API exposes a new ConnectionRequest message field named
SessionTimeout that allows the developer to specify the maximum amount of idle time before
GPSS releases a connection to VMware Greenplum. If you choose to make use of this feature in
your GPSS client application, upgrade actions are required as described in Upgrading the
Streaming Server.

Release 1.9

Release Date: March 10, 2023

Greenplum Streaming Server 1.9.0 adds new features, includes changes, and resolves issues.

You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.9.0.

New and Changed Features

Greenplum Streaming Server 1.9.0 includes these new and changed features:

GPSS now invokes the user-defined functions or SQL commands that you provide in
TEARDOWN SQL (version 2) or teardown statement (version 3 (Beta)) on both job success and
failure. The functions/commands were previously invoked only when the job was successful.

The gpsscli dryrun command now supports the —--property <template var>=<value> option.
This allows you to use property template variables in the load configuration file that you provide to
the command.

You can optionally provide the --name <jobname> option to the gpsscli dryrun command to
name the dry run job.

GPSS introduces a new ENCODING (version 2) / encoding (version 3 (Beta) property to the load
configuration file that allows you to specify the character set encoding for source data that is of the
csv, custom, delimited, Or json formats.

23

Tanzu Greenplum Streaming Server

e GPSS introduces a new FILTER (version 2)/ filter (version 3 (Beta)) property to the load
configuration file that allows you to specify an output filter for a job. An output filter may be useful
when you want to write different data to multiple VMware Greenplum output tables.

¢ GPSS introduces a new ALERT (version 2) / alert (version 3 (Beta)) property block to the load
configuration file that allows you to register for a job stopped notification, specifying a command
that GPSS will run when a job is stopped.

¢ GPSS introduces a new TRANSFORMER (version 2) / transformer (version 3 (Beta)) property block
to the load configuration file that allows you to specify input and/or output transform functions for
the data. An input transformer is a go plugin, an output transformer is a user-defined SQL function
(UDF). GPSS supports specifying transforms only when loading from Kafka or RabbitMQ data
sources.

¢ GPSS now supports reading Kafka and RabbitMQ messages that contain multiple lines when
included in only one of the key or value input data (not both).

¢ The GPSS RabbitMQ data source is no longer Beta, it is promoted to a supported feature.

¢ The GPSS RabbitMQ data source now supports strong consistency for streams. Refer to
Understanding RabbitMQ Message Offset Management for more information about how GPSS
manages RabbitMQ offsets and message consistency.

Resolved Issues

Greenplum Streaming Server 1.9.0 resolves these issues:

32640
Resolves an issue where idle SELECT VERSION () queries consumed connection resources.

Release 1.8

Release 1.8.1

Release Date: December 21, 2022

Greenplum Streaming Server 1.8.1 includes changes and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.8.1.
Changed Features

Greenplum Streaming Server 1.8.1 includes these changes:

¢ GPSS now names the external table that it creates for an s3 load job with the s3ext prefix. The
prefix was previously s3ext.

Resolved Issues

Greenplum Streaming Server 1.8.1 resolves these issues:

24

Tanzu Greenplum Streaming Server

32584
Resolves an issue where the Greenplum Streaming Server returned the error pq: password
authentication failed for user when aload job specified no password because it did not clear
the configuration of the previous job.

32522
Resolves an issue where the Greenplum Streaming Server exposed the shadow password string in
the logs. GPSS now obscures the password in the log file.

32498
Resolves a resource leak issue where, when a Kafka job failed, the Greenplum Streaming Server did
not close the Kafka metadata consumer.

N/A
Resolves an issue where the Greenplum Streaming Server calculated the job identifier hash
incorrectly when the RabbitMQ load configuration file specified a queue source.

Release 1.8.0

Release Date: September 9, 2022

Greenplum Streaming Server 1.8.0 adds new features, includes changes, and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.8.0.

New and Changed Features
Greenplum Streaming Server 1.8.0 includes these new and changed features:

GPSS Configuration

The gpss . json server configuration file now includes a Gpfdist:Certificate:DBClientShared property.
Use this boolean property to instruct GPSS to reuse the Gpfdist SSL certificate for the control channel
(client) connection to VMware Greenplum. Configuring SSL for the Control Channel provides the relevant
configuration information.

General

¢ When ReuseTables is set to false, GPSS now creates each job's external table using the job
name rather than a hash. This enables you to more easily track external tables per-job. About
External Table Naming and Lifecycle describes how GPSS names external tables, and also
provides information about their lifecycle.

¢« GPSS introduces new scheduling options that allow you to configure automatic stop and restart
conditions for jobs. You specify the RUNNING DURATION, AUTO STOP RESTART INTERVAL,
MAX RESTART TIMES, and QUIT AT EOF AFTER (Version 2) or running duration,
auto stop restart interval, max restart times, and quit at eof after (version 3 (Beta))
options in the SCHEDULE/schedule block of the load configuration file.

25

Tanzu Greenplum Streaming Server

e GPSS enhances the delimited data format to support setting quote and escape characters and an
end-of-line prefix string when you use the format to load data into VMware Greenplum.

Kafka Data Source

¢ GPSS changes the name of the version 3 (Beta) load configuration file window property to task.

¢ GPSS records in the progress log file the total number of rows that it processes in a Kafka
message. Now, when loading jsonl, delimited, and csv format data where a Kafka message can
include multiple rows, the total rows read identifies the Kafka message and the new total rows
field identifies the total number of rows inserted and rejected.

¢ The Kafka data source exposes a new metadata field named timestamp. This int64-type field
identifies the time that a message was written to the Kafka log.

e When savE FAILING BATCH is true, GPSS records the time that a record was inserted into the
backup table. The name of the new column is gpss_save timestamp. Refer to Redirecting Data to
a Backup Table when GPSS Encounters Expression Evaluation Errors for a discussion of the
backup table schema.

e When RECOVER FAILING BATCH (Beta) iS true, GPSS reports more information about the result
of the operation, including the batch size and number of records recovered.

File Data Source

e The file data source now supports the delimited data format.

e The file data source can now load the stdout of a command into a VMware Greenplum table. You
specify command specifics via the new Exec (version 2) or exec (version 3 (Beta)) block in the load
configuration file.

e GPSS now supports initiating a dry run of a file job.

New RabbitMQ Data Source (Beta)

GPSS introduces Beta support for loading from a RabbitMQ data source. You can load messages from a
RabbitMQ queue or stream into VMware Greenplum. Refer to Loading from RabbitMQ into Greenplum (Beta)
for more information about using this new Beta feature, and rabbitmg-v3.yaml (Beta) and rabbitmg-v2.yaml
(Beta) for more information about the supported load configuration file properties.

Resolved Issues

Greenplum Streaming Server 1.8.0 resolves these issues:

32278, 32180
Resolves an issue where a VMware Greenplum cluster using pgbouncer to manage connections did
not receive a client SSL certificate as expected. GPSS now exposes a DBClientShared GPSS
server configuration property that you can use to instruct GPSS to present the Gpfdist certificate as
the client SSL cert to VMware Greenplum.

32096, 31802

26

Tanzu Greenplum Streaming Server

Resolves an issue where GPSS was unable to automatically stop a job based on run time by
exposing new job scheduling properties.
32044
Resolves an issue where the recovery of a failed batch (Beta) could not be adequately monitored.
GPSS now records the time that a record is inserted into the backup table in a new column named
gpss_save timestamp. GPSS also reports more information during bad batch recovery operations.
32144
Resolves an issue where external tables used by GPSS were difficult to locate. Now, when
ReuseTables IS false, GPSS names the external table using the job name instead of a hash of
configuration properties.
182386619
GPSS would incorrectly fall back (to earliest or latest offset) all Kafka partitions, even those without
offset gaps. This issue is resolved; GPSS now falls back only those partitions that have experienced
an offset gap and writes this information to the GPSS log.

N/A
Resolves an issue where GPSS did not reset Max RETRIES after a job was successfully submitted
and running.

Release 1.7

Release 1.7.2

Release Date: April 21, 2022

Greenplum Streaming Server 1.7.2 includes changes and resolves issues.

n You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.7.2.

Changed Features

Greenplum Streaming Server 1.7.2 includes these changes:

¢ GPSS adds support for specifying backslash escape sequences when you set the following CSV
options: delimiter, quote, and escape. GPSS supports the standard backslash escape sequences
for backspace, form feed, newline, carriage return, and tab, as well as escape sequences that you
specify in hexadecimal format (prefaced with \x). Refer to Backslash Escape Sequences in the
PostgreSQL documentation for more information.

¢ Toresolve issue 32168, GPSS version 1.7.2 introduces support for loading files or messages that
contain one JSON record per line into VMware Greenplum. To use this new feature, you must
specify FORMAT: jsonl in version 2 format load configuration files, or specify json format with
is jsonl: true in version 3 (Beta) format load configuration files.

Resolved Issues

Greenplum Streaming Server 1.7.2 resolves these issues:

27

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Tanzu Greenplum Streaming Server

32168
Resolves an issue where GPSS did not support loading multi-line JSON files into VMware
Greenplum. GPSS 1.7.2 introduces support for loading JSON message or file data that contains a
single JSON record per line.

N/A
Resolves an issue where GPSS did not support escape sequences that were specified in the CSV
delimiter, quote, and escape options. GPSS now supports standard and hexadecimal-format
backslash escape sequences.

Release 1.7.1

Release Date: March 31, 2022

Greenplum Streaming Server 1.7.1 resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.7.1.

Resolved Issues

Greenplum Streaming Server 1.7.1 resolves these issues:

32105
Resolves an issue where GPSS incorrectly added an offset based on the VMware Greenplum local
time zone to timestamp (Without timezone) types that it loaded into a VMware Greenplum table.
181293923
In some cases, GPSS returned the error pq: missing data for column *name* wWhen loading a
file containing CSV-format data. This issue is resolved; GPSS no longer automatically adds a
newline when one already exists at the end of the file.

Release 1.7.0

Release Date: March 18, 2022

Greenplum Streaming Server 1.7.0 adds new features, includes changes, and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.7.0.

New and Changed Features
Greenplum Streaming Server 1.7.0 includes these new and changed features:
OS and Platforms

e GPSS introduces support for Red Hat Enterprise Linux 8 and Photon 3 for VMware Greenplum 6,
and now provides download packages for these operating system versions on Broadcom Support

28

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Greenplum%C2%AE%20Streaming%20Server

Tanzu Greenplum Streaming Server

Portal.

¢ GPSS updates the version of go that it uses to build the CLI tools to version 1.17.6 to mitigate
CVE-2021-44716.

GPSS Configuration

GPSS introduces a default timeout of 10 seconds for a gpss service instance to connect to VMware
Greenplum and a related environment variable named GpDB_CONNECT TIMEOUT. You can set this
environment variable to change the amount of time that GPSS waits to establish a connection to VMware
Greenplum as described in Running the Greenplum Streaming Server.

Authentication

o After it encounters an SSL connection failure on the control channel, GPSS will attempt to initiate a
non-SSL connection on the channel.

e The gpss.json server configuration file now includes an authentication property block. Use the
configuration properties in this block to specify a user name and password for client authentication
to the GPSS server. Refer to Configuring the Streaming Server for Client-to-Server Authentication
for additional information about this new feature.

e GPSS adds the -U/--username and -pP/--password options to the gpsscli subcommands to
specify the user name and password for client authentication to the GPSS server.

Kafka Data Source

¢ GPSS now saves the topic:partition:offset for each badly-formatted Kafka message written
to the error log; you can view this information when you run the SELECT * FrROM
gp read error log('<exttbl>') command.

e GPSS adds the --skip-explain flag to the gpsscli start subcommand to skip the explain SQL
check step of its internal processing.

¢ GPSS now supports loading from a single kafka topic into multiple VMware Greenplum tables.
Provide an ouTPUTS : TABLE (version 2) or targets:gpdb:tables:table (version 3 (Beta)) block for
each table, and specify the properties that identify the data targeted to each.

¢ GPSS introduces a new datatype named gp json (Beta) to the dataflow extension. For additional
information about using the gp json data type, refer to About the JSON Format and Column Type
documentation.

File and Kafka Data Sources

¢ GPSS adds support for new CSV options for file and Kafka jobs. You can now specify the delimiter,
quote, and null string values in the load configuration file. You can identify a list of columns whose
values GPSS forces to be not null. You can also specify GPSS's behaviour when it encounters
missing trailing fields in a row of data. New version 2 property names include DELIMITER, QUOTE,
NULL_STRING, ESCAPE, FORCE NOT NULL, and FILL MISSING FIELDS. New version 3 property
names include delimiter, quote, null string, escape, force not null, and

fill missing fields.

29

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Greenplum%C2%AE%20Streaming%20Server
https://nvd.nist.gov/vuln/detail/CVE-2021-44716

Tanzu Greenplum Streaming Server

e GPSS exposes new PREPARE SQL and TEARDOWN SOL (version 2) and prepare statement and
teardown_ statement (version 3) load configuration file properties for Kafka and file data sources.
You can use the properties to specify user-defined function or SQL commands for GPSS to run
before executing a job, and/or at job completion.

version 3 (Beta) Configuration

GPSS 1.7.0 adds, changes, and relocates property keywords in the version 3 (Beta) configuration file
format. Refer to the gpsscli-v3.yaml (Beta), gpkafka-v3.yaml (Beta), and filesource-v3.yaml (Beta)
reference pages for the new keywords and locations.

New S3 Data Source (Beta)

GPSS 1.7.0 introduces Beta support for a new data source, S3. This data source does not read directly
from S3, but rather uses the VMware Greenplum s3 protocol and external tables to read from s3 and write
to Greenplum in parallel. Refer to Loading from S3 into Greenplum (Beta) for more information about using
this new feature, and s3source-v3.yaml (Beta) for the supported load configuration file properties.

New Commands and Options

e GPSS adds the new gpsscli dryrun subcommand. When you invoke this command, GPSS
performs a trial run of a Kafka or S3 job without actually writing to VMware Greenplum. You can use
the command to help diagnose load job errors as described in Diagnosing an Error with a Trial Load.

¢ GPSS adds the -f/--force flag to the gpsscli remove subcommand to forcibly stop and remove a
GPSS job(s).

Other Changes

¢ GPSS adds new Submitted and Success statuses for batch (file, s3) jobs. GPSS 1.7.0 also
changes the Sfopped status to signify that a job was stopped by the user. Refer to the gpsscli
status reference page for a description of GPSS job statuses.

e GPSS 1.7.0 removes the Streaming Job API (Beta) documentation.
Resolved Issues

Greenplum Streaming Server 1.7.0 resolves these issues:

CVE-2021-44716
Updates the go library to version 1.17.6.

N/A
You can now specify an Avro schema file path for both the key and the value when you load Kafka
data into VMware Greenplum.

N/A
Resolves an issue where GPSS erroneously inserted a \n after parsing 76 characters of Avro data
when the load configuration file specified bytes to base64: true.

32022

30

https://nvd.nist.gov/vuln/detail/CVE-2021-44716

Tanzu Greenplum Streaming Server

Resolves an issue where GPSS did not provide any way to run SQL commands before GPSS
initiates a job or after a GPSS job completes by exposing new properties in version 2 and version 3
(Beta) load configuration files (PREPARE SQL/TEARDOWN SQL and
prepareistatement/teardownistatement).

31886
Resolves an issue where GPSS returned an authentication error when SSL was deactivated for the
user (i.e. there was a hostnoss1 connection type entry configured for the user in the pg hba.conf
file). GPSS now attempts to initiate a non-SSL connection when it encounters an SSL connection
failure on the control channel.

Release 1.6

Release 1.6.0

Release Date: May 28, 2021

Greenplum Streaming Server 1.6.0 adds new features, includes changes, and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.6.0.

New and Changed Features

Greenplum Streaming Server 1.6.0 includes these new and changed features:

¢ GPSS adds the -c | --config flag/option to the gpss command to specify the JSON-formatted
configuration file.

e The gpsscli --version command now displays the version of the GPSS server in addition to
displaying that of the client.

¢ The gpss.json server configuration file now includes a xeepalive property block. Use the
configuration properties in this block to specify timeout options for the gRPC connection between
the GPSS client and the GPSS server.

¢ GPSS changes the format of front-end logs (messages written by commands to stdout) from CSV
format to a more human-readable format. Related, GPSS adds a --csv-1og option to the
commands to write the front-end logs in CSV format. GPSS also adds a --color option to
commands to enable the use of color in message display.

¢ GPSS exposes a new load configuration property for Kafka data sources named 1DLE DURATION
(version 2 configuration) and idle duration ms (version 3 configuration). Use this property to
specify that GPSS use lazy load mode, waiting until data arrives before locking the target VMware
Greenplum table.

e GPSS exposes a new load configuration property for Kafka data sources named
SCHEMA PATH ON GPDB (version 2 configuration) and schema path on gpdb (version 3
configuration). Use this property to specify the path to the Avro .avsc file that contains the schema
of the Kafka key or value data (but not both). This file must reside in the same location on all
VMware Greenplum segment hosts.

31

Tanzu Greenplum Streaming Server

GPSS exposes a new load configuration property for Kafka data sources named FALLBACK OFFSET
(version 2 configuration) and fallback offset (version 3 configuration). Use this property to
specify that GPSS automatically handle Kafka message offset mismatches, and how.

GPSS exposes new load configuration properties for Kafka data sources to support access to an
SSL-secured schema registry. Refer to Accessing an SSL-Secured Schema Registry for more
information.

GPSS now supports acting as a high-level Kafka consumer when the Kafka client properties
include a group. id setting.

GPSS exposes a new load configuration property for Kafka data sources named CONSTSTENCY
(version 2 configuration) and consistency (version 3 configuration). Use this property to specify
how GPSS manages Kafka message offsets when it acts as a high-level consumer. Refer to
Understanding Kafka Message Offset Management for more information.

GPSS 1.6.0 provides additional documentation about developing and using custom formatters with
GPSS.

Beta Features

Greenplum Streaming Server 1.6.0 includes these new Beta features:

GPSS exposes a new load configuration property for Kafka data sources named

RECOVER FAILING BATCH (version 2 configuration) and recover failing batch (version 3
configuration). Use this property in conjunction with save FATLING BaATCH to instruct GPSS to
automatically reload the good data in the batch, and retain only the error data in the backup table.

Note: Enabling this feature may have severe performance implications when any data in the Kafka
topic generates an expression error.

Note: This feature requires that GPSS has the VMware Greenplum privileges to create a function.

GPSS adds a new extension named dataflow. This extension includes a new data type, gp_jsonb
(available for VMware Greenplum version 6.x only), and a new formatter, text in. You must
CREATE EXTENSION dataflow; in each database in which you choose to use these types and
formatters. For additional information about the gp_jsonb data type, see About the JSON Format
and Column Type.

Resolved Issues

Greenplum Streaming Server 1.6.0 resolves this issue:

31458

31396

31359

Resolves an issue where job progress information was available only via stdout. GPSS now
supports consumer groups, which saves message offsets to the Kafka topic.

Resolves an issue where the GPSS Ubuntu download package was missing certain dependent
libraries. These libraries are now marked as required.

Resolves an issue where GPSS could not restart a job that had been stopped for a long period of
time. GPSS now supports a FALLBACK OPTION load configuration property that instructs GPSS to

32

Tanzu Greenplum Streaming Server

automatically handle offset mismatches, and how to handle them.
31315
Resolves an issue where GPSS was unable to load data from Kafka when TLS-secured
communication was required between the Kafka broker and the schema registry. GPSS now
supports load configuration properties to specify the certificates and keys required for this
communication.
31278
Resolves an issue where GPSS was unable to load Avro data when the schema was not embedded
in the .avro file. GPSS now supports the scuEMA pPATH ON GPDB load configuration property to
specify the .avsc schema file.
31277
Resolves a request for a job timeout by supporting a new 1poLE DURATION load configuration property.
30723, 30711
Resolves an issue where GPSS failed to load JSON-format data that included \u0000 by creating a
new VMware Greenplum data type named gp jsonb (Beta).

Release 1.5

Release 1.5.3

Release Date: April 15, 2021

Greenplum Streaming Server 1.5.3 resolves an issue.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.5.3.

Resolved Issues

Greenplum Streaming Server 1.5.3 resolves this issue:

31357
Resolves an issue where GPSS did not correctly handle custoM orpTION properties specified in a
load configuration file. GPSS now supports using the NavE and PARAMSTR properties to specify a
custom formatter user-defined function.

Release 1.5.2

Release Date: March 5, 2021

Greenplum Streaming Server 1.5.2 resolves several issues.

ﬂ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.5.2.

Changed Features

33

Tanzu Greenplum Streaming Server

Greenplum Streaming Server 1.5.2 includes this change:

e« GPSS omits the end time in its output error hints. Resolved issue 31287 provides more information.
Resolved Issues

Greenplum Streaming Server 1.5.2 resolves these issues:

N/A
Resolves an issue where GPSS logged the message execInsert and err: nil because it did not
check for an error before logging.

31287
Resolves an issue where GPSS did not always display the correct end time in the output error hint
by removing the end time condition.

177153850
Resolves an issue where a GPSS query returned a syntax error from VMware Greenplum because
MATCH COLUMNS was empty. GPSS now requires and checks that this field includes at least one
column when you submit a load job that specifies UPDATE or MERGE mode.

177133400
Resolves an issue where GPSS stopped a Kafka job unexpectedly and did not return an error when it
encountered a batch that contained only a control message.

177077055
Resolves an issue where the --a11 option was incorrectly displayed in the help output of the
gpsscli load command.

177077007
GPSS consumed a large mount of memory caching Kafka messages when it ran many concurrent
jobs that read from multiple partitions. This issue is resolved; GPSS now specifies a less aggressive
default value for the 1ibrdkafka queued.max.messages.kbytes property when the user does not
explicitly configure it.

177014072
Resolves an issue where GPSS incorrectly returmned the error gpkafka load show job progress
fail, err: job progress is nil when it failed to start a Kafka job. GPSS now returns the more
meaningful error gpkafka load start job failed in this situation.

176842005
Resolves an issue where GPSS submitted a job with the wrong name when a gpsscli load *.yaml
command operated on more than one load job.

Release 1.5.1

Release Date: February 5, 2021

Greenplum Streaming Server 1.5.1 includes changes and resolves issues.

ﬁ You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.5.1.

Changed Features

34

Tanzu Greenplum Streaming Server

Greenplum Streaming Server 1.5.1 includes these changes:

e \Version 1.5.1 is the first standalone GPSS release that includes a .deb installation package for
Ubuntu 18.04 LTS systems.

e The gpsscli subcommands now consistently return zero (0) on success and non-zero when GPSS
encounters an error.

¢ GPSS improves the error message that it returns when it encounters a mismatched extension or
formatter version.

¢ GPSS bundles a patched version of the 1ibserdes library to fix an issue that can arise when the
SCHEMA REGISTRY ADDRS property value includes a trailing slash. See resolved issue 31137.

¢ GPSS now registers the gp read persistent error log() function when you register the GPSS
extension in a database. Resolved issue 31201 provides more information.

¢ The progress log file name format has changed; the new format retains the complete job name
rather than truncating it to 8 characters.

Resolved Issues

Greenplum Streaming Server 1.5.1 resolves these issues:

31201
Resolves an issue where GPSS returned a permission denied for language c error when it
attempted, at runtime, to register an internal function as the VMware Greenplum user that started
GPSS, and this user did not have the privileges required to create such functions. GPSS now
registers this internal function when you create the GPSS extension in a database.

31137
Due to a bug in the dependent library 1ibserdes, GPSS did not correctly handle a trailing slash
when specified in the first address in a list of scuEMA REGISTRY ADDRS. This issue is resolved,;
GPSS 1.5.1 bundles a patched version of the 1ibserdes library that can handle such addresses.

176136800
Resolves an issue where GPSS returned an error when it interpreted and parsed the
SAVE_FAILING BATCH property and value in a (deprecated) version 1 load configuration file, when
version 1 of the file does not support this property. GPSS now displays a wamning message when it
encounters a property that is not supported in a version 1 configuration file.

176068963
GPSS reported an offset gap when it read Kafka messages using the read committed isolation
level, the job was restarted, and the topic retention period had expired. This issue is resolved; GPSS
now records control message offsets.

175867685
Resolves an issue where the -i | --edit-in-place option was displayed in the help output of
subcommands that did not support the option. GPSS now correctly displays the option only for the
gpsscli convert command.

175867670
Resolves an issue where the gpssc1i subcommands did not return consistent values. gpssc1i now
returns zero (0) on success and non-zero on failure.

n/a

35

Tanzu Greenplum Streaming Server

Resolves an issue where GPSS did not correctly validate a filesource.yaml load configuration file
before submitting the job.

Release 1.5.0

Release Date: December 2, 2020

Greenplum Streaming Server 1.5.0 adds new features, includes changes, and resolves issues.

K

You are required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.5.0.

New and Changed Features

Greenplum Streaming Server 1.5.0 includes these new and changed features:

The load configuration file ERROR LIMIT property, previously mandatory, is now optional. The
default value for the property is zero (0); GPSS deactivates error logging and stops a load operation
upon encountering the first error.

GPSS includes out-of-the-box Prometheus integration, enabling you to use the tool to monitor your
gpss server instances. Refer to Monitoring GPSS Service Instances for more information on
enabling and using this integration.

New configuration properties in the gpss. json server configuration file include:

o The pebugPort configuration property. You can use this property to identify the port number
on which GPSS starts a debug server for the gpss server instance. Refer to Pulling
Information from the Debug Server for more information.

o The MinTLSVersion configuration property. You use this property to specify the minimum
TLS version that GPSS requests on encrypted connections.

o The Logging configuration property block. You can use these configuration properties to
set the front-end and back-end logging levels for GPSS commands. See About GPSS
Logging.

o The Jobstore configuration property block. Use the configuration property in this block to
specify a local directory in which GPSS maintains job status information. This allows a

GPSS server instance to (re)start any in-progress jobs when the instance first starts up.
See About GPSS Job Management.

o The Monitor configuration property block. You use this property to enable GPSS
Prometheus integration.

GPSS no longer generates and assigns a unique identifier as the job name when you invoke the
gpsscli submit OF gpsscli load commands without specifying the --name option. GPSS now
assigns the base name of the load configuration file as the default job name.

GPSS exposes a new load configuration property for Kafka data sources named parTITTONS. Use
this property to specify the specific partition numbers from which you want GPSS to load Kafka
messages from the topic. (This property is not supported for the Kafka version 1 configuration file
format.)

36

Tanzu Greenplum Streaming Server

¢ GPSS supports specifying template parameters for load configuration file properties. When you
specify the { {template\ var}} value syntax in the file, GPSS substitutes template\ var with a
value that you specify viathe -p | --property template\ var=value option when you submit
or load the job.

e GPSS supports SSL encryption on the control channel between GPSS and the VMware Greenplum
coordinator, and ships with an updated pq library to support this feature. See Configuring SSL for
the Control Channel for configuration information.

e The gpsscli start, stop, and remove subcommands now support a --a11 flag. When you specify
this flag, GPSS: starts all submitted jobs, stops all running jobs, or removes all stopped jobs.

e The gpsscli submit and gpsscli load commands can now operate on one or more YAML load
configuration files.

¢ GPSS exposes the new save FAILING BATCH load configuration property. When you set this
property to true, GPSS also writes loading data to a backup table. When GPSS encounters
expression evaluation errors, this backup table aids in the recovery of the load operation. See
Redirecting Data to a Backup Table when GPSS Encounters Expression Evaluation Errors for
additional information. (This property is not supported for the Kafka version 1 configuration file
format.)

¢ GPSS 1.5.0 introduces a new Beta feature, the version 3 load configuration file format. This format
introduces a new YAML organization and keywords, and more closely aligns with the GPSS gRPC
Streaming Job API. Refer to gpsscli-v3.yaml (Beta) for the version 3 syntax.

¢ GPSS 1.5.0 supports the persisent error log feature of VMware Greenplum when you are running
against Greenplum version 5.26+ or 6.6+. For more details about the persisent error log, refer to the
CREATE EXTERNAL TABLE SQL reference page in the VMware Greenplum documentation.

Resolved Issues

Greenplum Streaming Server 1.5.0 resolves these issues:

30332
In some cases when GPSS reused external tables for jobs, it did not update the external table that it
uses internally for load operations when the target Greenplum table definition was modified.
171299427
Resolves an issue where GPSS was unable to cancel a batch write operation when it encountered an
error, and left a lingering session.

Release 1.4

Release 1.4.3

Release Date: December 17, 2021

Greenplum Streaming Server 1.4.3 resolves an issues and includes related changes.

ﬁ You may be required to perform upgrade actions for this release. Review Upgrading the

37

https://docs.vmware.com/en/VMware-Greenplum/6/greenplum-database/ref_guide-sql_commands-CREATE_EXTERNAL_TABLE.html

Tanzu Greenplum Streaming Server

Streaming Server to plan your upgrade to GPSS 1.4.3.

Changes

Greenplum Streaming Server 1.4.3 includes this change:

e Afterit encounters an SSL connection failure on the control channel, GPSS will attempt to initiate a
non-SSL connection on the channel.

Resolved Issues

Greenplum Streaming Server 1.4.3 resolves this issue:

31886
Resolves an issue where, after upgrade to version 1.4.2, GPSS returned an authentication error
when SSL was deactivated for the user (i.e. there was a hostnoss1 connection type entry configured
for the user in the pg hba.conf file). GPSS now attempts to initiate a non-SSL connection when it
encounters an SSL connection failure on the control channel.

Release 1.4.2

Release Date: November 2, 2020

Greenplum Streaming Server 1.4.2 resolves issues and includes related changes.

ﬁ You may be required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.4.2.

Changes

Greenplum Streaming Server 1.4.2 includes these changes:

e GPSS now specifies the SSL prefer mode on the control channel to the VMware Greenplum
coordinator host. GPSS previously explicitly deactivated SSL on the channel.

Resolved Issues

Greenplum Streaming Server 1.4.2 resolves these issues:

n/a
Resolves an issue where GPSS recorded an incorrect count in the progress log file when the
messages it received included offset gaps, such as with transaction control messages.

30776, 174685715
Resolves an issue where gpsscli stop would not respond (hang).

174685711
Resolves an issue where GPSS failed to load a large (>2GB) file. GPSS now transfers a file in
multiple, smaller chunks when loading to Greenplum.

174984151

38

Tanzu Greenplum Streaming Server

GPSS sent an HTTP request to the Avro schema registry service on every segment on every
commit; in some cases, this created and destroyed a large number of TCP connections in the
process. GPSS resolves this issue by reading the schema a single time per session (as long as the
schema remains unchanged).

Release 1.4.1

Release Date: August 7, 2020

Greenplum Streaming Server 1.4.1 resolves issues and includes related changes.

n You may be required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.4.1.

Changes

Greenplum Streaming Server 1.4.1 includes these changes:

e GPSS bundles a patched version of the 1ibrdkafka library to fix an issue that can arise when the
Kafka topic that GPSS loads includes messages with discontinuous offsets. See resolved issue
30797, 30776.

¢ GPSS now always tracks Kafka job progress in a separate, CSV-format log file. See resolved issue
173603095 and Checking the Progress of a Load Operation.

¢ GPSS 1.4.1 changes the format and content of the server and client log file messsages. The old
log file format was delimited text, which could not be parsed when the text contained a newline. The
log files are now CSV-format and include a header row. See resolved issue 173603029 and
Examining GPSS Log Files.

Resolved Issues

Greenplum Streaming Server 1.4.1 resolves these issues:

n/a
When the schema registry service was down, GPSS appeared to hang during a Kafka load operation
because it tried to access the registry multiple times for each Kafka message. This issue is
resolved; GPSS now reports an error and stops retrying immediately when it detects that the schema
registry is down.

30797, 30776
Due to a bug in the dependent library 1ibrdkafka, a load job from Kafka would hang when there
were aborted Kafka transactions in the topic, or when the messages were deleted before GPSS was
able to consume them. This issue is resolved. GPSS 1.4.1 bundles a patched version of the
librdkafka library and can now handle message offsets that are not continuous.

30760
Certain merge/update operations failed with the error cannot parallelize an UPDATE statement
that updates the distribution columns because GPSS versions 1.3.5 through 1.4.0 used the
Greenplum Postgres Planner by default, which does not support updating columns that are specified

39

Tanzu Greenplum Streaming Server

as the distribution key. GPSS 1.4.1 resolves this issue by not explicitly specifying a query
planner/optimizer, but rather using the default that is configured in the Greenplum cluster.

173653147
In some cases, gpsscli stop would hang when you invoked it to stop a Kafka load job that GPSS
had previously retried. This issue is resolved.

173637940
The GPSS utilities distributed in the VMware Greenplum 6.8.x and 6.9.0 Client and Loader Tools
packages were missing the dependent library 1ibserdes.so. This issue is resolved, the package
now includes this library.

173637900
The GPSS 1.4.1 Batch Data gRPC API fixes a parallel loading regression that manifested itself when
the gpss. json server configuration file included the (default) ReuseTables: true property setting.

173603095
Because GPSS tracked job progress only during gpsscli progress command execution, the
progress information for jobs for which you did not run the command was lost. This issue is resolved.
GPSS now always tracks job progress in a separate, CSV-format log file (with header row) named
progress_*jobname* *jobid* *date*.log.

173603029
GPSS log file messages with embedded newlines could not be parsed. This issue is resolved;
GPSS changes the client and server log file format to CSV (with header row).

Release 1.4.0

Release Date: June 26, 2020

Greenplum Streaming Server 1.4.0 adds new features, includes changes, and resolves issues.

ﬁ You may be required to perform upgrade actions for this release. Review Upgrading the
Streaming Server to plan your upgrade to GPSS 1.4.0.

New and Changed Features

Greenplum Streaming Server 1.4.0 includes these new and changed features:

e GPSS supports loading from a file data source. You can now load data in Avro, binary, CSV, and
JSON files into VMware Greenplum. See Loading File Data into Greenplum for more information.

¢ GPSS defines a new MeTA load configuration property block. You can load the properties in this
single JSON-format column into the target table, or use the properties in update or merge criteria for
a load operation. The available META properties are data-source specific:

o The Kafka data source exposes the following META properties: topic (text), partition
(int), and offset (bigint).

o The file data source exposes a single META property named filename (text).
e GPSS supports Avro data containing binary fields.

« GPSS implements a faster update in merge mode for large datasets when the load configuration
specifies no upDATE coLumns. In this scenario, GPSS updates all MappING columns in each row.

40

Tanzu Greenplum Streaming Server

¢ You can use GPSS to load data into a VMware Greenplum cluster that utilizes the PgBouncer
connection pooler.

¢ The CentOS 7.x GPSS packages for Greenplum 6 support Oracle Enterprise Linux 7.
¢ GPSS uses a single thread and socket per partition by sharing a Kafka consumer between workers.

e GPSS bundles 1ibrdkafka version 1.4.2. This version provides support for controlling how GPSS
reads Kafka messages written transactionally via the isolation.level property.

¢ GPSS 1.4 introduces the new Streaming Job API (Beta), a gRPC API that allows you to manage
and submit streaming jobs to the server.

Resolved Issues

Greenplum Streaming Server 1.4.0 resolves these issues:

172142789
The GPSS Batch Data gRPC API fixes inaccurate Transferstats success and error counts for data

load operations initiated in update mode.
Deprecated Features

Deprecated features may be removed in a future minor release of the Greenplum Streaming Server. GPSS
1.4.x deprecates:

e The gpkafka Version 1 configuration file format (deprecated since 1.4.0).
e The gpkafka.yaml (versions 1 and 2) poLL block, including the poLL:BATCHSIZE and
POLL: TIMEOUT properties (deprecated since 1.3.5).
Removed Features

Deprecated features may be removed in a future minor release of the Greenplum Streaming Server. GPSS
1.4.X removes:

e The gpsscli history and gpkafka history commands (deprecated in 1.3.5).

Release 1.3

Release 1.3.1

Release Date: December 19, 2019

Greenplum Streaming Server version 1.3.1 is the first standalone release of GPSS. GPSS 1.3.1 is also
included in the VMware Greenplum version 5.24 and 6.2 distributions.

Greenplum Streaming Server 1.3.1 is a maintenance release that resolves several issues.

Resolved Issues

Greenplum Streaming Server 1.3.1 resolves these issues:

169806983

a1

Tanzu Greenplum Streaming Server

In some cases, reading from Kafka using the default MinTMaL INTERVAL (0 seconds) caused GPSS
to consume a large amount of CPU resources, even when no new messages existed in the Kafka
topic. This issue is resolved.

169807372, 169831558
GPSS 1.3.0 did not recognize internal history tables that were created with GPSS 1.2.6 and earlier.
In some cases, this caused GPSS to load duplicate messages into VMware Greenplum. This issue
is resolved.

Release 1.3.0

Release Date: November 1, 2019

Greenplum Streaming Server version 1.3.0 is included in the VMware Greenplum version 5.23 and 6.1
distributions.

Greenplum Streaming Server 1.3.0 is a minor release that includes new and changed features and resolves

several issues.

New and Changed Features

Greenplum Streaming Server 1.3.0 includes these new and changed features:

¢« GPSS now supports log rotation, utilizing a mechanism that you can easily integrate with the Linux
logrotate system. See Managing GPSS Log Files for more information.

¢ GPSS has added the new tnPUT: FTLTER load configuration property. This property enables you to
specify a filter that GPSS applies to Kafka input data before loading it into VMware Greenplum.

¢ GPSS displays job progress by partition when you provide the --partition flag to the gpssc1i

progress command.

¢ GPSS enables you to load Kafka data that was emitted since a specific timestamp into VMware
Greenplum. To use this feature, you provide the --force-reset-timestamp flag when you run

gpsscli load, gpsscli start, Or gpkafka load.

¢ GPSS now supports update and merge operations on data stored in a VMware Greenplum table.
The load configuration file accepts MODE, MATCH COLUMNS, UPDATE COLUMNS, and
UPDATE CONDITION property values to direct these operations. Example: Merging Data from Kafka
into Greenplum Using the Streaming Server provides an example merge scenario.

e GPSS supports Kerberos authentication to both Kafka and VMware Greenplum.
e GPSS supports SSL encryption between GPSS and Kafka.

e GPSS supports SSL encryption on the data channel between GPSS and VMware Greenplum.
Resolved Issues

Greenplum Streaming Server 1.3.0 is a minor release that resolves these issues:

168130147
In some situations, specifying the --force-reset-earliest flag when loading data failed to read
from the correct offset. This problem has been fixed. (Using the —-force-reset-*xxx* flags outside
of an offset mismatch scenario is discouraged.)

42

Tanzu Greenplum Streaming Server

167997441
GPSS did not save error data to the external table error log when it encountered an incorrectly-
formatted JSON or Avro message. This issue has been fixed; invoking gp read error log() on
the external table now displays the offending data.

164823612
GPSS incorrectly treated Kafka jobs that specified the same Kafka topic and Greenplum output
schema name and output table name, but different database names, as the same job. This issue
has been resolved. GPSS now includes the VMware Greenplum name when constructing a job
definition.

Beta Features

Greenplum Streaming Server 1.x includes these Beta features:

¢ GPSS adds support for a RabbitMQ data source (introduced in 1.8.0, promoted to supported in
1.9.0).

¢ GPSS adds support for an s3 data source (introduced in 1.7.0).
¢ GPSS adds a new datatype named gp json to the dataflow extension (introduced in 1.7.0).

¢ GPSS exposes a new load configuration property for Kafka data sources named
RECOVER FAILING BATCH (version 2 configuration) and recover failing batch (version 3
configuration). Use this property in conjunction with save FATLING BaTCH to instruct GPSS to
automatically reload the good data in the batch, and retain only the error data in the backup table.

Note: Enabling this feature may have severe performance implications when any data in the Kafka
topic generates an expression error.

Note: This feature requires that GPSS has the VMware Greenplum privileges to create a function.
(Introduced in 1.6.0.)

e GPSS adds a new extension named dataflow. This extension includes a new data type, gp jsonb
(available for VMware Greenplum version 6.x only), and a new formatter, text in. (Introduced in
1.6.0).

¢ GPSS specifies a new version 3 load configuration file format. This format introduces a new YAML
organization and keywords. (Introduced in 1.5.0.)

Deprecated Features

Deprecated features may be removed in a future release of the Greenplum Streaming Server. GPSS 1.x
deprecates:

e Specifying the gpss. §son configuration file to the gpss command standalone (deprecated since
1.6.0). Use the -c | --config option when you specify the file.

¢ The gpkafka Version 1 configuration file format (deprecated since 1.4.0).

e The gpkafka.yaml (versions 1 and 2) porL block, including the pPoTL:BATCHSTZE and
POLL: TIMEOUT properties (deprecated since 1.3.5).

Known Issues and Limitations

43

Tanzu Greenplum Streaming Server

Greenplum Streaming Server 1.x has these known issues:

31998

In some cases, an ExPLAIN INSERT command internally launched by GPSS on a Kafka job may
take a long time to complete. You can work around this issue by specifying the --skip-explain flag
to the gpsscli start command when you start the job.

N/A: In releases 1.11.0 and 1.11.1, setting the commrT.MINIMAL INTERVAL YAML configuration parameter

when working with RabbitMQ data could result in data loss. This issue is resolved in release 1.11.2.

N/A

N/A

30503

The saveE FATILING BATCH and PARTITIONS configuration properties are not supported when you use
the version 1 configuration file format to load data.

The Greenplum Streaming Server may consume a very large amount of system memory when you
use it to load a huge (hundreds of GBs) file, in some cases causing the Linux kernel to kill the GPSS
server process. Do not use GPSS to load very large files; instead, use gpfdist.

Due to limitations in the VMware Greenplum external table framework, GPSS cannot log a data type
conversion error that it encounters while evaluating a mapping expression. For example, if you use
the expression EXPRESSTON: (jdata->>'id') ::int in your load configuration file, and the content
of jdata->>'id" is a string that includes non-integer characters, the evaluation fails and GPSS
terminates the load job. GPSS cannot log and propagate the error back to the user via

gp_read error log().
Workarounds for Kafka:

e Setthe save FATLING BATCH load configuration property to true, and then manually load
any data batch that included expression errors.

¢ Skip the bad Kafka message by specifying a --force--reset-*xxx* flag on the job start or
load command.

¢ Correct the message and publish it to another Kafka topic before loading it into VMware
Greenplum.

44

https://docs.vmware.com/en/VMware-Greenplum/6/greenplum-database/utility_guide-ref-gpfdist.html

Tanzu Greenplum Streaming Server

Overview of the VMware Tanzu Greenplum
Streaming Server

The Tanzu Greenplum streaming server (GPSS) is an ETL (extract, transform, load) tool. An instance of the
GPSS server ingests streaming data from one or more clients, using Tanzu Greenplum readable external
tables to transform and insert the data into a target Greenplum table. The data source and the format of the
data are specific to the client. You may also unload data from Tanzu Greenplum to a file using writable
external tables.

The Tanzu Greenplum streaming server includes the gpss command-line utility. When you run gpss, you
start an instance of GPSS; this instance waits indefinitely for client data.

The Tanzu Greenplum streaming server also includes the gpsscli command-line utility, a client tool for
submitting data load jobs to a GPSS instance and managing those jobs.

ﬁ The Tanzu Greenplum streaming server gpsscli client utility currently supports Kafka, file,
RabbitMQ, and S3 (Beta) data sources, and file data as a target for unloading data.

Architecture

The Tanzu Greenplum streaming server is a gRPC server. The GPSS gRPC service definition includes the
operations and messages necessary to connect to Tanzu Greenplum and examine Greenplum metadata.
The service definition also includes the operations and messages necessary to write data from a client into
a Tanzu Greenplum table. For more information about gRPC, refer to the gRPC documentation.

The gpsscli utility is a Tanzu Greenplum streaming server gRPC client, as is the Tanzu Greenplum
Connector for Apache NiFi. You can develop your own GPSS gRPC client using the GPSS Batch Data API.

45

https://grpc.io/docs/

Tanzu Greenplum Streaming Server

Greenplum Database

Client Host

Greenplum control :(Coordinator
onnector for L
Apache NiFi

RabbitMQ
Cluster

Client Host

Client Host

A typical sequence of events for performing an ETL task using the Tanzu Greenplum streaming server
follows:

1. Auser initiates one or more ETL load jobs via a client application.

2. The client application uses the gRPC protocol to submit and start data load job(s) to a running
GPSS service instance.

3. The GPSS service instance submits each load request transaction to the Tanzu Greenplum cluster
coordinator instance. GPSS uses the gpfdist protocol to store data in external tables that it
creates or reuses.

4. The GPSS service instance writes the data delivered from the client directly into the segments of
the Tanzu Greenplum cluster.

46

Tanzu Greenplum Streaming Server

Installing the VMware Tanzu Greenplum
Streaming Server

The Tanzu Greenplum streaming server (GPSS) components are included in the VMware Tanzu Greenplum
5 and 6 server distributions. If you want to install the newest version of these components, you may be
required to download a package from the VMware Tanzu Greenplum Streaming Server tile on Broadcom
Support Portal.

The GPSS packages available for Greenplum 5/6/7 for download include:

e GPSS gppkg Installer - A . gppkg file that you install to upgrade GPSS on all hosts in your Tanzu
Greenplum cluster.

e GPSS ETL Installer- An .rpm or .deb file that you use to install or upgrade GPSS on a dedicated
ETL server host with no Tanzu Greenplum bits installed.

e GPSS tarball - A .tar.gz file that you install to upgrade GPSS on a single dedicated ETL server
host that includes a Tanzu Greenplum server installation.

Refer to the Supported Platforms section in the Release Notes to determine specific Tanzu Greenplum and
operating system version support for GPSS.

About the Download Packages

The GPSS gppkg Installer and the GPSS tarball package files install the libraries, executables, and script
files required to register and use the Tanzu Greenplum streaming server client and server utilities directly
into your Tanzu Greenplum installation.

The GPSS ETL Installer package file installs the client side executables and dependent libraries, and a
script to set up the ETL runtime environment.

Name Description

gpkafk Load Kafka data into Tanzu Greenplum using a single command.
a

gpss Start a Tanzu Greenplum streaming server instance.

gpsscli Manage (submit, start, stop, and so forth) a Tanzu Greenplum streaming server data load job; currently supports
Kafka, file, RabbitMQ, and S3 (Beta) data sources.

kafkac https://github.com/edenhil/kafkacat Kafka test and debug utility.
at

Downloading a GPSS Installer

47

https://github.com/edenhill/kafkacat

Tanzu Greenplum Streaming Server

Download the appropriate GPSS installer package for your Tanzu Greenplum version and operating system
platform from Broadcom Support Portal. For example, to download the Greenplum 6 . gppkg package for
Red Hat/CentOS 7, click to select the RHEL7->GPSS gppkg Installer for GPDB6 RHELY7 file.

ﬁ For more information about download prerequisites, troubleshooting, and instructions, see
Download Broadcom products and software.

The naming format of the GPSS installer files is:
gpss-gpdb<major-version>-<gpss-version>-<platform>-x86 64.<filetype>
For example, the GPSS installer files for Tanzu Greenplum 5 for Red Hat/CentOS 6 are named:

gpss-gpdb5-1.10.4-rhel6-x86_ 64.gppkg
gpss-gpdb5-1.10.4-rhel6-x86_ 64.tar.gz
gpss-gpdb5-1.10.4-rhel6-x86_64.rpm

The GPSS installer files for Tanzu Greenplum 6 for Red Hat 7 are named:

gpss-gpdb6-1.10.4-rhel7-x86_ 64.gppkg
gpss-gpdb6-1.10.4-rhel7-x86_64.tar.gz
gpss-gpdb6-1.10.4-rhel7-x86_64.rpm

The GPSS installer files for Tanzu Greenplum 6 for Red Hat 8 are named:

gpss-gpdb6-1.10.4-rhel8-x86_64.gppkg
gpss-gpdb6-1.10.4-rhel8-x86_64.tar.gz
gpss-gpdb6-1.10.4-rhel8-x86_64.rpm

The GPSS installer files for Tanzu Greenplum 6 for Photon 3 are named:

gpss-gpdb6-1.10.4-photon3-x86_64.gppkg
gpss-gpdb6-1.10.4-photon3-x86_64.tar.gz
gpss-gpdb6-1.10.4-photon3-x86_64.rpm

The GPSS installer files for Tanzu Greenplum 6 for Ubuntu 18.04 are named:

gpss-gpdb6-1.10.4-ubuntul8.04-x86_64.gppkg
gpss-gpdb6-1.10.4-ubuntul8.04-x86_64.tar.gz
gpss-gpdb6-1.10.4-ubuntul8.04-x86 64.deb

The GPSS installer files for Tanzu Greenplum 6 for Rocky Linux 9 are named:

gpss-gpdb6-1.10.4-rocky9-x86_ 64.gppkg
gpss-gpdb6-1.10.4-rocky9-x86 64.tar.gz
gpss-gpdb6-1.10.4-rocky9-x86_ 64.rpm

The GPSS installer files for Tanzu Greenplum 7 for Red Hat 9 are named:

gpss-gpdb7-1.10.4-rhel9-x86_ 64.gppkg
gpss-gpdb7-1.10.4-rhel9-x86_ 64.tar.gz

48

https://support.broadcom.com/group/ecx/productdownloads?subfamily=VMware%20Tanzu%20Greenplum%C2%AE%20Streaming%20Server
https://knowledge.broadcom.com/external/article?articleNumber=142814

Tanzu Greenplum Streaming Server

gpss-gpdb7-1.10.4-rhel9%-x86_ 64.rpm

The GPSS installer files for Tanzu Greenplum 7 for OEL 8 are named:

gpss-gpdb7-1.10.4-0el8-x86_ 64.gppkg
gpss-gpdb7-1.10.4-0el8-x86 64.tar.gz
gpss-gpdb7-1.10.4-0el8-x86_ 64.rpm

The GPSS installer files for Tanzu Greenplum 7 for OEL 9 are named:

gpss-gpdb7-1.10.4-0el19-x86_64.gppkg
gpss-gpdb7-1.10.4-0el19-x86_64.tar.gz
gpss-gpdb7-1.10.4-0el19-x86_64.rpm

The GPSS installer files for Tanzu Greenplum 7 for Rocky Linux 8 are named:

gpss-gpdb7-1.10.4-rocky8-x86_64.gppkg
gpss-gpdb7-1.10.4-rocky8-x86_64.tar.gz
gpss-gpdb7-1.10.4-rocky8-x86_64.rpm

Note the name and the file system location of the downloaded file.

Follow the instructions in Verifying the VMware Tanzu Greenplum Software Download to verify the integrity
of the Tanzu Greenplum streaming server software.

Prerequisites

Before you install a GPSS package, ensure that you have stopped all Tanzu Greenplum streaming server
load jobs and gpss server instances running in the Tanzu Greenplum cluster and on the ETL host system.

Installing the GPSS gppkg

The GPSS gppkg Installer updates the GPSS components on all hosts in the Tanzu Greenplum cluster.

ﬁ The GPSS executables, libraries, and supporting files are installed directly into scrrOME,
overwriting the previous versions of the files.

Perform the following procedure to install the GPSS . gppkg:

1. Locate the installer file that you downloaded from Broadcom Support Portal and copy the file to the
Tanzu Greenplum coordinator host.

2. Login to the Tanzu Greenplum coordinator host as the gpadmin administrative user and set up your

environment. For example:

$ ssh gpadmin@<gpcoord>
gpadmin@gpcoord$. /usr/local/greenplum-db/greenplum path.sh

3. Ensure that Tanzu Greenplum is running.

4. Run the gppkg command to install the GPSS . gppkg on all hosts in the Tanzu Greenplum cluster.

49

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/install_guide-verify_sw.html

Tanzu Greenplum Streaming Server

For example, fo install the package on a Greenplum 6 cluster running on Red Hat/CentOS 7:
$ gppkg -1 gpss-gpdb6-1.10.4-rhel7-x86_ 64.gppkg
To install the package on a Greenplum 7 cluster running on Red Hat/CentOS 8.

$ gppkg install gpss-gpdb7-1.10.4-rhel8-x86_ 64.gppkg

Installing the GPSS Tarball

The GPSS tarball .tar.gz installer updates the GPSS components on a single Tanzu Greenplum host.

n The GPSS executables, libraries, and supporting files are installed directly into scrrOME,
overwriting the previous versions of the files.

Perform the following procedure to install the GPSS .tar.gz:

1. Locate the installer file that you downloaded from Broadcom Support Portal and copy the file to the
Tanzu Greenplum host.

2. Log in to the Tanzu Greenplum host as the gpadmin administrative user and set up your
environment. For example:

$ ssh gpadmin@<gphost>
gpadmin@gphost$. /usr/local/greenplum-db/greenplum_path.sh

3. Unpack the .tar.qgz file. For example, to unpack the file for Greenplum 5 on Red Hat/CentOS 6:

gpadmin@gphost$ tar xzvf gpss-gpdb5-1.10.4-rhel6-x86 64.tar.gz

Unpacking the file creates a directory named gpss-gpdb5-1.10.4-rhel6 %86 64/ in the current
working directory. Its contents include bin/, 1ib/, and share/ directories, as well as an install
SCI’ipt named install gpdb component.

4. Navigate to the unpacked directory. For example:
gpadmin@gphost$ cd gpss-gpdb5-1.10.4-rhel6 x86 64
5. Run the install script to install the new GPSS components into $GpHOME. For example:

gpadmin@gphost$./install gpdb component

Installing the GPSS ETL Package

The GPSS ETL Installerinstalls the GPSS executables, libraries, and supporting files on a single ETL host.
Perform the following procedure to install the GPSS ETL package:

1. Locate the installer file that you downloaded from Broadcom Support Portal and copy the file to the
ETL host.

50

Tanzu Greenplum Streaming Server

2. Logintothe ETL host. For example:
$ ssh <etluser>@<etlhost>

3. Install the package using your package management utility. You must be the superuser or have
sudo access to install packages.

For example, to install the ETL package for Greenplum 6 on Red Hat/CentOS 7:
etluser@etlhost$ sudo yum install gpss-gpdb6-1.10.4-rhel7-x86_ 64.rpm

To install the ETL package for Greenplum 6 on Ubuntu 18.04:
etluser@etlhost$ sudo dpkg --install gpss-gpdb6-1.10.4-ubuntul8.04-x86_ 64.deb

The GPSS ETL tools are installed into the /usr/local/gpss-<version> directory. The installation
process creates a symbolic link from /usr/local/gpss to this install directory.

4. Before using the GPSS ETL tools, you must first source the gpss path.sh environment file:

etluser@etlhost$. /usr/local/gpss/gpss_path.sh

Inspecting the Quickstart Guide

When you install Tanzu Greenplum streaming server in your system, it creates a directory under your
installation path named docs/c1i help. This directory contains a quick start guide with useful information
and examples to set up load jobs, along with some sample configuration files. You may copy the provided
configuration files and adjust them to your environment settings.

51

Tanzu Greenplum Streaming Server

Upgrading the VMware Tanzu Greenplum
Streaming Server

If you are using the Tanzu Greenplum streaming server (GPSS) in your current VMware Tanzu Greenplum
installation, you must perform the GPSS upgrade procedure when:

¢ You upgrade to a newer version of Tanzu Greenplum, or

¢ You install a new standalone GPSS package on your ETL host or in your Tanzu Greenplum
installation.

The GPSS upgrade procedures describe how to upgrade GPSS in your Tanzu Greenplum installation or on
your ETL host. This procedure uses GPSS.from to refer to your currently-installed GPSS and GPSS.new to
refer to the GPSS installed when you upgrade to the new version of Tanzu Greenplum or install a new
GPSS package.

The GPSS upgrade procedure has two parts. You perform one procedure before, and one procedure after,
you upgrade to a new version of Tanzu Greenplum or GPSS:

e Step1: GPSS Pre-Upgrade Actions
¢ Upgrade to a new Tanzu Greenplum version or install a new GPSS package.

e Step2: Upgrading GPSS

Step1: GPSS Pre-Upgrade Actions

Perform this procedure in your GPSS.from installation before you upgrade to a new version of Tanzu
Greenplum or GPSS:

1. Log in to the Tanzu Greenplum coordinator host or the ETL host and set up your environment. For
example:

$ ssh gpadmin@<gpcoord>
gpadmin@gpcoord$. /usr/local/greenplum-db/greenplum path.sh

Or:

$ ssh etluser@<etlhost>
etluser@etlhost$. /usr/local/gpss/gpss_path.sh

2. Identify and note the current version (GPSS.from) of GPSS. For example:
$ gpss --version

3. Stop all gpss jobs that are in the Running state.

52

Tanzu Greenplum Streaming Server

4. Stop all running gpss instances.

5. Upgrade to the new version of Tanzu Greenplum or install a new version of GPSS, and then
continue your GPSS upgrade with Step2: Upgrading GPSS.

Step2: Upgrading GPSS

After you upgrade to the new version of Tanzu Greenplum or install the new version of GPSS in your
Greenplum installation, perform the following procedure to upgrade the GPSS. new software:

1. Log in to the Tanzu Greenplum coordinator host or the ETL host and set up your environment. For
example, on the coordinator:

$ ssh gpadmin@<gpcoord>
gpadmin@gpcoord$. /usr/local/greenplum-db/greenplum path.sh

2. Identify and note the new version (GPSS.new) of GPSS. For example:
gpadmin@gpcoord$ gpss --version

3. If you are upgrading from GPSS version 1.3.0 or older:

GPSS 1.3.0 introduced a regression that caused it to no longer recognize history tables (internal

tables that GPSS creates for each job) that were created with GPSS 1.2.6. This regression could
cause GPSS to load duplicate Kafka messages into Greenplum. This issue is resolved in GPSS
1.3.1.

You are not required to perform any upgrade steps related to this issue; GPSS will automatically
perform the required actions when you resubmit and restart a load job that you initiated with GPSS
1.3.0. GPSS's upgrade actions are dependent upon the GPSS version(s) from which you are
upgrading, and are described below:

o If you are upgrading directly from GPSS 1.2.6 or older, GPSS performs no special upgrade
actions.

o If you are upgrading from GPSS 1.3.0 and you previously submitted load jobs with both
GPSS 1.2.6 or older and 1.3.0, GPSS copies the internal history table for each submitted
job to a table with the correct name format, and uses those tables. GPSS also retains and
renames the internal history table for each GPSS 1.3.0 job, adding the prefix deprecated .

o [fyou first and only used GPSS 1.3.0 and are upgrading from this version, GPSS renames
the internal history table for each restarted job.

4. If you are upgrading from GPSS version 1.3.1 or older:

o GPSS 1.3.2 changes the gpss.json configuration file:
= The new file format allows you to specify unique SSL certificates for GPSS and
gpfdist. If you are using SSL to encrypt communication between GPSS and
Kafka, Greenplum, or the GPSS client, you must update the gpss.json server
configuration file to configure the correct certificate block.

= The ListenAddress:SSL property is removed. Ensure that you remove this
property from all GPSS server configuration files.

53

o

Tanzu Greenplum Streaming Server

GPSS 1.3.2 renames gpkafka check t0 gpkafka history. If you have any scripts or
programs that reference gpkafka check, you must replace these references with gpkafka

history.

GPSS 1.3.2 removes the ENCrRYPTTON property from the gpkafka.yaml job configuration

file. Ensure that you remove this property from all job configuration files, and that you

provide Kafka SSL configuration properties via the prRoPERTY block in the file.

GPSS 1.3.2 removes the LocaL HOSTNAME and LOCAL PORT properties from the
gpkafka.yaml job configuration file. You must remove these properties from all job
configurations, and specify the gpfdist configuration for each job in one of the following
ways:
= If you are loading data with gpkafka 1oad, provide the --config
gpfdistconfig.json OF ——gpfdist-host hostaddr and --gpfdist-port
portnum options when you run the command.

= If you are loading data with the gpssc1i job management commands, ensure that
the gpss. json configuration file for the gpss server instance servicing the request
specifies the desired Gpfdist:Host and Gpfdist:Port settings.

GPSS 1.3.2 removes the --no-reuse flag from the gpsscli load and gpsscli start
commands. If you have any scripts or programs that reference this flag, you must remove
the references.

If you developed a client application with GPSS 1.3.5 or earlier and you want to use the new
MaxErrorRows OF Abort session capabilities added to the close service that were introduced in

GPSS 1.3.6, you must:

1.

Edit the gpss.proto service definition and add the new closerequest field(s):

message CloseRequest {
Session session = 1;
int32 MaxErrorRows = 2;
bool Abort = 3;

Re-generate the GPSS client classes.
Add code to utilize the new fields.

Re-compile and re-distribute your GPSS client application. Refer to Developing a Batch
Data Client for supporting information.

If you are upgrading from GPSS version 1.4.x or older:

o

GPSS 1.4.0 removes the gpsscli history and gpkafka history commands. If you
have any scripts or programs that reference these commands, you must remove the
references.

GPSS 1.4.1 changes the client and server log file format to CSV. If you created any scripts
that parsed the previous log file format, you must update that script logic.

GPSS 1.4.1 adds a new, separate logfile to track Kafka job progress. If you created any
scripts that relied on the existence of progress information in the client or server log files,
you must update that script logic.

54

Tanzu Greenplum Streaming Server

7. If you are upgrading from GPSS version 1.6.x or older and you have registered the dataflow
extension in any database, you must drop and re-create the extension:

DROP EXTENSION dataflow;
CREATE EXTENSION dataflow;

8. If you are upgrading from GPSS version 1.7.x or older:

o GPSS 1.8.0 changes the name of the Kafka version 3 load configuration file window
property to task. If you have any Kafka load configuration files that specify window:, you
must change the references to task:.

9. If you are upgrading from GPSS version 1.9.x or older:

o GPSS 1.10.0 changes the naming format of its server log files as described in the Version
1.10.0 release notes and adds a job_id field to the content of the server log file. You must
update any scripts that you have written that rely on the log file naming format or the log
file content of previous releases.

10. If you developed a client application with GPSS 1.9.x or earlier and you want to use the new
session timeout capability added to the connect service that was introduced in GPSS 1.10.0, you
must:

1. Edit the gpss.proto service definition and add the new sessionTimeout field to the
ConnectRequest Message:

message ConnectRequest {

string Host = 1;

bool UseSSL = 6;

int32 SessionTimeout = 7;

2. Re-generate the GPSS client classes.
3. Add code to utilize the new field.

4. Re-compile and re-distribute your GPSS client application. Refer to Developing a Batch
Data Client for supporting information.

11. If you are upgrading from GPSS version 1.10.0:

o GPSS 1.10.1 changes the naming format of its per-run server log files as described in the
Version 1.10.1 release notes. You must update any scripts that you have written that rely
on the per-run server log file naming format introduced in version 1.10.0.

12. If you installed a new version of Tanzu Greenplum, or you installed the GPSS gppkg or .tar.gz
packages in your Greenplum installation, you must drop and re-create the GPSS extension in any
Tanzu Greenplum in which you are using GPSS to load data. A database superuser or the database
owner must run these SQL commands:

DROP EXTENSION gpss;
CREATE EXTENSION gpss;

55

13.
14.

Tanzu Greenplum Streaming Server

(If the extension does not already exist, GPSS automatically creates it in a database the first time
a Greenplum superuser or the database owner submits a load job to any table that resides in that
database.)

Restart your gpss instances.
Resubmit and restart your GPSS jobs.

For any Kafka job that you resubmit and restart, GPSS will consume Kafka messages from the
offset associated with the latest timestamp recorded in the history table for the job.

56

Tanzu Greenplum Streaming Server

Configuring and Managing the VMware
Tanzu Greenplum Streaming Server

The Greenplum streaming server (GPSS) manages communication and data transfer between a client (for
example, the VMware Tanzu Greenplum Connector for Apache NiFi) and VMware Tanzu Greenplum. You
must configure and start a GPSS instance before you use the service to load data into Tanzu Greenplum.

Prerequisites
The Tanzu Greenplum streaming server gpss and gpsscli command line utilities are automatically installed
with Tanzu Greenplum version 5.16 and later.
Before you start a GPSS server instance, ensure that you:
e Install and start a compatible Tanzu Greenplum version.
¢ Can identify the hostname of your coordinator node.

¢ Can identify the port on which your Tanzu Greenplum coordinator server process is running, if it is
not running on the default port (5432).

e Select one or more GPSS host machines that have connectivity to:

o The GPSS client host systems.

o The Tanzu Greenplum coordinator and all segment hosts.
If you are using the gpsscli client utility, ensure that you run the command on a host that has connectivity
to:

* The client data source host systems. For example, for a Kafka data source, you must have
connectivity to each broker host in the Kafka cluster.

¢ The Tanzu Greenplum coordinator and all segment hosts.

Registering the GPSS Extension

The Tanzu Greenplum and the Tanzu Greenplum streaming server download packages install the GPSS
extension. This extension must be registered in each database in which Greenplum users use GPSS to
write data to Greenplum tables.

GPSS automatically registers its extension in a database the first time a Greenplum superuser or the
database owner initiates a load job. You must manually register the extension in a database if non-privileged
Greenplum users will be the first or only users of GPSS in that database.

Perform the following procedure as a Tanzu Greenplum superuser or the database owner to manually
register the GPSS extension:

57

Tanzu Greenplum Streaming Server

1. Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@Rgpcoord
gpadmin@gpcoord$. /usr/local/greenplum-db/greenplum path.sh

2. Start the psql subsystem, connecting to a database in which you want to register the GPSS
formatter function. For example:

gpcoord$ psgl -d testdb
3. Enter the following command to register the extension:

testdb=# CREATE EXTENSION gpss;

4. Perform steps 2 and 3 for each database in which the Tanzu Greenplum streaming server will write
client data.

Configuring the Tanzu Greenplum Streaming Server

You configure an invocation of the Tanzu Greenplum streaming server via a JSON-formatted configuration
file. This configuration file includes properties that identify the listen address of the GPSS service and an
optional debug server port number, as well as the gpfdist service host, bind address, and port number. You
can specify encryption options in the file, can configure a password shadow encode/decode key, and can
also configure whether GPSS reuses external tables.

The contents of a sample GPSS JSON configuration file named gpsscfgl.json follow:

"ListenAddress": {
"Host": "",
"Port": 5019,
"DebugPort": 9998

by

"Gpfdist": {
"Host": "",
"Port": 8319,
"ReuseTables": false
bo
"Shadow": {
"Key": "a_very_ secret_key"

Refer to the gpss.json reference page for detailed information about the GPSS configuration file format and
the configuration properties that the utility supports.

You may find a quick start guide and a sample GPSS configuration file under the
SGPHOME/docs/cli help/gpss directory.

ﬁ If your Kafka or Tanzu Greenplum clusters are using Kerberos authentication or SSL
encryption, see Configuring the Tanzu Greenplum Streaming Server for Encryption and

58

Tanzu Greenplum Streaming Server

Authentication.

Refer to Configuring the Tanzu Greenplum Streaming Server for Client-to-Server Authentication for
information about configuring client authentication for GPSS.

Running the Tanzu Greenplum Streaming Server

You use the gpss utility to start an instance of the Greenplum streaming server on the local host. When you
run the command, you provide the name of the configuration file that defines the properties of the GPSS
and gpfdist service instances. You can also specify the name of a directory to which gpss writes server
and progress log files. For example, to start a GPSS instance specifying a log directory named gpsslogs
relative to the current working directory:

$ gpss --config gpsscfgl.json --log-dir ./gpsslogs

By default, GPSS waits 10 seconds to establish a connection to Tanzu Greenplum. If GPSS does not
establish the connection in that time, a time out error is displayed and the gpss command returns. You can
change the time out value by setting the GpDB conNECT TIMEOUT environment variable before or when you
start GPSS. For example, to set the timeout to 30 seconds, start the GPSS instance as follows:

$ GPDB_CONNECT TIMEOUT=30 gpss --config gpsscfgl.json --log-dir ./gpsslogs

The default mode of operation for gpss is to wait for, and then consume, job requests and data from a
client. When run in this mode, gpss waits indefinitely. You can interrupt and exit the command with Control-
c. You may also choose to run gpss in the background (). In both cases, gpss writes server log and status
messages to stdout.

ﬁ gpss keeps track of the status of each client job in memory. When you stop a GPSS
server instance that did not specify a Jobstore setting in its server configuration file, you
lose all registered jobs. You must re-submit any previously-submitted jobs that you require
after you restart the server instance. gpss will resume a job from the last load offset.

Refer to the gpss reference page for additional information about this command.

About GPSS Logging

The gpss, gpsscli, and gpkafka commands each write log messages to stdout (front-end) and to a log
file (back-end). These messages provide useful information about GPSS command processing and any
errors that it encounters.

GPSS supports the following log levels, listed in order from most to least severe:

Level Description
fatal Logs conditions that prevent GPSS from functioning, such as being unable to listen on the configured port.
error Logs job failure messages.

59

Tanzu Greenplum Streaming Server

Level Description

warn or Logs messages that contain information that requires the user's attention, such as the use of deprecated
warning features or notification of job retry in progress.

info Logs messages that contain information about GPSS actions, including job status changes and requests

between the GPSS client and server.
debug Logs more detailed and more verbose messages that may aid in troubleshooting.
The default log level for command front-end messages to stdout is info. The default log level for back-end
messages that the commands write to the log file is debug.
You can change the front-end or back-end log level by specifying a Logging block in the gpss.json GPSS

server configuration file and setting the appropriate property:

"Logging": {
"Backendlevel": "<level>",

"Frontendlevel": "<level>"

The default format for command front-end messages that GPSS writes to stdout uses spaces between
fields. You can provide options to commands to instruct GPSS to write the front-end messages in CSV
format, or to use color in the message. The default format for back-end messages that GPSS writes to the
log file is CSV format.

Managing GPSS Log Files

If you specify the -1 or --10g-dir option when you start gpss or run a gpssc1li subcommand, GPSS
writes log messages to a file in the directory that you specify. If you do not provide this option, GPSS
writes log messages to a file in the $HOME /gpAdminTogs directory.

By default, GPSS writes server log messages to a file with the following naming format:
gpss_<timestamp-with-millis>.log

Where <timestamp-with-millis> identifies the date and time (with milliseconds) that the log file was
created. This date reflects the day/time that you started the gpss server instance, or the day/time that the
log was rotated for that server instance (see Rotating the GPSS Server Log File below):

GPSS writes client log messages to a file with the following naming format, where <date> identifies the
date that you ran the command:

gpsscli <date>.log

GPSS writes progress messages for each Kafka job to a separate file in the server log directory. Progress
logs are written to a file with this naming format:

progress_<jobname> <jobid> <date>.log

<jobname> and <jobid> (max 8 characters each) identify the name and the identifier of the GPSS job, and
<date> identifies the date that you ran the command.

60

Tanzu Greenplum Streaming Server

Example GPSS log file names:
® gpss 23-04-27 151722.950.1og
° gpsscli 230427.log

® progress jobk2 d577c£37 20200803.1log

Configuring Per-Run Server Log Files

You can set the Logging:SplitByJob property in the gpss.json server configuration file to direct GPSS to
generate per-run server log files for each job:

"Logging": {
"SplitByJob": "<level>"

The only valid <level>is StartTime.

When you specify "splitByJob™: "startTime" in the server configuration file, GPSS creates, for every
job, a new log file in the server log directory each time the job is started (gpssc1i start) or loaded
(gpsscli load). GPSS creates the log file regardless of the success or failure of the start or load job
operation.

When you set splitByJob, the server log file name will also include the job name:
gpss_<jobname> <timestamp-with-millis>.log. For example:

gpss_nightly load-23-05-11_104800.123.1og

When the job is stopped (gpsscli stop), GPSS logs to the most recently created log file for the specified
job.

Rotating the GPSS Server Log File

If the log file for a gpss server instance grows too large, you may choose to archive the current log and
start fresh with an empty log file.

There are two ways to rotate GPSS server logs:
1. Configure GPSS to automatically rotate the server logs.

2. You initiate server log rotation on-demand.

Configuring Automatic Server Log File Rotation

You can set the L.ogging:Rotate property in the gpss.json server configuration file to direct GPSS to
automatically rotate the server log files:

"Logging": {
"Rotate": "<policy period>"

Valid <policy period>s are daily and hourly.

61

Tanzu Greenplum Streaming Server

When you specify a Logging:Rotate property setting in the server configuration file, GPSS automatically
rotates the server log file for you at the end of the policy period (hour, day) that you specify. If you stop the
server instance, a new invocation restarts the time period.

Rotating the Server Log File On-Demand

To prompt GPSS to rotate the serverlog file on-demand, you must:

1. Rename the existing log file. For example:

gpadmin@gpcoord$ mv <logdir>/gpss <timestampmillis>.log <logdir>/gpss_ <timestam
pmillis>.log.1

2. Send the s1GUsr2 signal to the gpss server process. You can obtain the process id of a GPSS
instance by running the ps command. For example:

gpadmin@gpcoord$ ps -ef | grep gpss
gpadmin@gpcoord$ kill -SIGUSR2 <gpss_ pid>

ﬁ There may be more than one gpss server process running on the system. Be sure
to send the signal to the desired process.

When it receives the signal, GPSS emits a log message that identifies the time at which it reset
the log file. For example:

. —[INFO]:- gpss log file rotate at 20230411:20:59:36.093

Integrating with logrotate
You can configure and manage GPSS server log file rotation with the Linux 1ogrotate utility.

This sample 1ogrotate configuration rotates and compresses the log file of each gpss server instance
running on the system weekly or when the file reaches 10MB in size. It operates on all-in-one server log
files that are written to the default location:

/home/gpadmin/gpAdminLogs/gpss_*.log {
rotate 5
weekly
size 10M
postrotate
pkill -SIGUSR2 gpss
endscript

compress

If this configuration is specified in a file named gpss rotate.conf residing in the current working directory,
you integrate with the Linux logrotate system with the following command:

$ logrotate -s status -d gpss_rotate.conf

62

https://linux.die.net/man/8/logrotate

Tanzu Greenplum Streaming Server

You may choose to create a cron job to run this command daily.

Monitoring GPSS Service Instances

GPSS provides out-of-the-box integration with the Prometheus open-source system monitoring and alerting
toolkit. Refer to Enabling Prometheus Metrics Collection for information about enabling and using this
integration.

About GPSS Job Management

When you submit a GPSS job, you provide a name/identifier for the job. If you do not specify a job name,
GPSS assigns and returns the base name of the load configuration file as the job name. You use this name
to manage the job throughout its lifecycle.

GPSS uses a data source-specific combination of properties specified in a load configuration file to
internally identify a job. For example, when it loads from a Kafka data source, GPSS uses the Kafka topic
name, and the target Tanzu Greenplum, schema, and table names for internal job identification. GPSS
creates internal and external tables for each job that are keyed off of these properties; these tables keep
track of the progress of the load operation. GPSS considers any load configuration file submitted with the
same value for these job-identifying properties to be the same internal job.

A gpss server instance keeps track of the status of each client job in memory. By default, this information
is invocation-specific. When you stop the server instance, you must re-submit any job that you want to run
when you next restart the instance.

You can configure the Jobstore property block in the gpss.json server configuration file to instruct GPSS to
retain job and job status information across invocations.

"JobStore": {
"File": {

"Directory": "<jobstore dir>"

When you specify a Jobstore:File:Directory property setting in the server configuration file, the GPSS
server instance keeps track of, and writes job information to, the directory that you specify. If you stop the
server instance, a new invocation will restore the jobs that were in progress when it last exited, loading the
jobs in memory and restoring their last known state.

Shadowing the VMware Tanzu Greenplum Password

When you use GPSS to load data into Tanzu Greenplum, you specify the Greenplum user/role password in
the passworD: property setting of a YAML-format load configuration file; see gpsscli.yaml.

You specify the Greenplum password in clear text. If your security requirements do not permit this, you can
configure GPSS to encode and decode a shadow password string that the GPSS client and server use
when communicating the Greenplum password.

ﬁ GPSS supports shadowing the Greenplum password only on load jobs that you submit and
manage with the gpssc1i subcommands. GPSS does not support shadowed passwords

63

https://prometheus.io/docs/introduction/overview/

Tanzu Greenplum Streaming Server

on load jobs that you submit with gpkafka load.

When you use this GPSS feature:

1. (Optional) You configure a shadow:Key in the gpss.json configuration file that you specify when you
start the GPSS instance. For example:

}I
"Shadow": {
"Key": "a_very secret_key"

2. You run the gpsscli shadow command on the ETL system to interactively generate the shadowed
password. For example:

$ gpsscli shadow --config gpss.json

please input your password

changemeCHANGEMEchangeme

"SHADOW : ERTBKXDWLAJHUF5UOGJY34QTXIBNYP4ULTWVHIUZIF4UYFPRIJVA"

You can automate this step using a command similar to the following:

$ echo changemeCHANGEMEchangeme | gpsscli shadow --config gpss.json | tail -1
"SHADOW: ERTBKXDWLAJHUF5UOGJY34QTXIBNYPA4ULTWVHIUZIF4UYFPRIJVA"

If you do not specify the --config gpss.son option, or this configuration file does not include a
Shadow:Key setting, GPSS uses its default key to generate the shadow password string.

3. You specify the shadow password string returned by gpsscli shadow in the PASSWORD: property
setting of a gpsscli.yaml load configuration file. For example:

DATABASE: testdb
USER: testuser
PASSWORD: "SHADOW:ERTBKXDWLAJHUFS5UOGJY34QTXIBNYP4ULTWVHIUZIF4UYFPRIJVA"

Always quote the complete shadow password string.

4. You provide the load configuration file as an option to gpsscli submit or gpsscli load when you
submit the job.

5. The GPSS instance servicing the job uses its shadow:Key, or the default key, to decode the
shadowed password string specified in PassworD:, and connects with VMware Greenplum.

Pulling Information from the Debug Server

When you specify a bebugPort in the gpss. json configuration file, or when you specify the --debug-port
option to the gpss command, GPSS starts a debug server on the local host. This server makes available
additional debug information about the running GPSS instance, including the call stack and performance
statistics.

64

Tanzu Greenplum Streaming Server

You can use the curl command to view the types of information available (HTML output):

$ curl http://127.0.0.1:9998/debug/pprof/ > debug_info.html
Or, use curl to view specific information:

$ curl http://127.0.0.1:9998/debug/pprof/heap?debug=1 > debug_heap
$ curl http://127.0.0.1:9998/debug/pprof/goroutine?debug=1 > debug goroutine
$ curl http://127.0.0.1:9998/debug/pprof/block?debug=1 > debug block

The commands above gather information and write the heap, the call stack, and locking information each to
a text file in the current working directory.
The GPSS debug server can also provide CPU profiling data. The following command gathers 10 seconds

of CPU profile data and writes it in binary format to the output file named debug cpu profile:

$ curl http://127.0.0.1:9999/debug/pprof/profile?seconds=10 > debug cpu profile

You may be asked to send the binary output file to support. Alternatively, you can run the Go Profiling Tool
on the file to parse and graph the results:

$ go tool pprof debug cpu profile
(pprof) web

The web command creates a graph of the profile data in SVG format, and opens the graph in a web browser.

Configuring VMware Tanzu Greenplum Streaming Server
for Encryption and Authentication

GPSS supports authenticating with Kerberos to obtain both Kafka and VMware Tanzu Greenplum
credentials. GPSS supports authenticating with LDAP to obtain Kafka credentials. GPSS also supports
using TLS/SSL to encrypt communication between Kafka and GPSS, between RabbitMQ and GPSS,
between the GPSS client and server, and on the data and control channels between GPSS/gpkafka and
Greenplum.

ﬁ GPSS does not support Kerberos authentication to RabbitMQ.

Configuring gpss and gpkafka for TLS-Encrypted
Communications with Kafka

If your Kafka version 0.9 and newer cluster is configured to use TLS encryption, you must configure GPSS
to use this encryption method when communicating with Kafka. You perform this configuration at both the
GPSS service instance and client levels.

Refer to the Apache Kafka Encryption and Authetication using SSL documentation for more information
about SSL configuration.

1. Create Kafka client keys for the gpss or gpkafka instance.

65

https://blog.golang.org/pprof
https://kafka.apache.org/documentation/#security_ssl

Tanzu Greenplum Streaming Server

2. Specify the location of the GPSS client certificates via Kafka properties in the PROPERTIES or

rdkafka prop (version 3) block of the load configuration file. For example:

PROPERTIES:
security.protocol: SSL
ssl.ca.location: /path/to/cert/kafka-ca.crt
ssl.certificate.location: /path/to/cert/gpssclient.crt

ssl.key.location: /path/to/cert/gpssclient.key

If you are using the gpssc1i subcommands to load data, ensure that the Listenaddress:Host that
you specify for the GPSS server identifies the common name (CN) in the certificate.

Configuring gpss for TLS-Encrypted Communications with
RabbitMQ

K

GPSS supports TLS only when loading from a RabbitMQ queue. GPSS does not support
TLS when loading from a RabbitMQ stream.

If your RabbitMQ cluster is configured to use TLS encryption, you may configure GPSS to use this
encryption method when it communicates with RabbitMQ. You perform this configuration at both the GPSS
service instance and client levels.

Refer to the RabbitMQ TLS Support documentation for more information about TLS configuration.

1.

Create RabbitMQ client keys for the gpss instance. Refer to the TLS Certificate Generator github
repository for information about generating RabbitMQ certificates.

Specify the RabbitMQ server in the load configuration file SERVER or server (version 3) property;
you must omit the user name and password. For example (version 2):

SERVER: localhost:5672

Specify the location of the GPSS client certificates via RabbitMQ properties in the PROPERTIES or
properties (version 3) block of the load configuration file. For example:

PROPERTIES:
use.ssl: true
ssl options.servername: "hostname"
ssl options.cacertfile: /path/to/cert/rabbit/ca/cacert.pem
ssl options.certfile: /path/to/cert/rabbit/client/rabbit-client.cert.pem
ssl options.keyfile: /path/to/cert/rabbit/client/rabbit-client.key.pem

4. Optional RabbitMQ TLS configuration properties and example settings include the following:

5.

ssl _options.verify: verify peer

ssl _options.fail if no _peer cert: true

If you are using the gpssc1i subcommands to load data, ensure that the Listenaddress:Host that
you specify for the GPSS server identifies the common name (CN) in the certificate.

66

https://www.rabbitmq.com/ssl.html
https://github.com/rabbitmq/tls-gen

Tanzu Greenplum Streaming Server

Configuring gpss and gpkafka for SSL-Encrypted
Communications with Greenplum

There are two communication channels between GPSS and Tanzu Greenplum: a control channel and a data
channel. GPSS supports SSL encryption on both channels.

Configuring SSL for the Data Channel

GPSS supports SSL encryption on the data channel to Greenplum using the gpfdists protocol for
encrypted communications.

If your Tanzu Greenplum cluster is configured to use SSL, you must configure GPSS to use this encryption
method for the data channel when it communicates with Greenplum.

1. Create GPSS keys for the gpfdist protocol instance.

2. Configure the gpfdist protocol to use SSL encryption to Greenplum by providing a
Gpfdist:Certificate block in the GPSS configuration file, and identify the file system location of
the SSL certificates. You can also specify a minimum TLS version. Sample gpss.json or
gpfdistconfig.json excerpt:

"Gpfdist": {
"Host": "127.0.0.1",
"Port": 5001,

"Certificate": {

"CertFile": "/home/gpadmin/cert/gpss.crt",
"KeyFile": "/home/gpadmin/cert/gpss.key",
"CAFile": "/home/gpadmin/cert/root client.crt"
"MinTLSVersion": "1.2"

3. If you are using gpkafka to load data, ensure that the cpfdist:Host that you specify identifies the
common name (CN) in the certificate.

Configuring SSL for the Control Channel

GPSS supports SSL encryption on the control channel to Greenplum as described in the PostgreSQL SSL
Support documentation. GPSS uses SSL only for encryption on the control channel; it does not check the
certificates. The default SSL mode that GPSS uses on this channel is the prefer mode.

You have two options for configuring GPSS client SSL for the control channel:

1. Option 1: Instruct GPSS to re-use the data channel (Gpfdist) certificate. Configuration steps
include:

1. Locating the Gpfdist:Certificate block in the gpss.json GPSS server configuration
file.

2. Setting the DBClientShared property to true:

"Gpfdist": {

"Certificate": {

67

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/admin_guide-external-g-gpfdists-protocol.html
https://www.postgresql.org/docs/9.4/libpq-ssl.html

Tanzu Greenplum Streaming Server

"DBClientShared": true

2. Option 2: Locate the certificates and keys in the ~/.postgresqgl directory on the GPSS server

host. Configuration steps include:
1. Copying the root certificate to the ~/.postgresql directory on the GPSS server host.

2. Generating a private key and client certificate for the GPSS server and copying both to the
~/.postgresqgl directory on the GPSS server host.

Configuring gpss and gpsscli for Encrypted gRPC
Communications

GPSS supports encrypting communications between the gpssc1i client and gpss server.

To use encrypted gRPC on connections between gpsscli and gpss, you must create server and client

keys, and provide the keys via configuration files that you provide to the commands.

1.
2.

Create server keys for the gpss server instance.
Create client keys for the gpssc1i client.

Configure the gpss service instance to use SSL encryption to the client by providing a
ListenAddress:Certificate block in the gpss.json GPSS configuration file. The properties in
this block should identify the file system location of the SSL server keys. You can also specify the
minimum TLS version. Sample gpss. json excerpt:

"ListenAddress": {

"Host": "",

"Port": 5019,

"Certificate": {
"CertFile": "/home/gpadmin/cert/gpss.crt",
"KeyFile": "/home/gpadmin/cert/gpss.key",
"CAFile": "/home/gpadmin/cert/root cli.crt”
"MinTLSVersion": "1.2"

Configure the GPSS client to use SSL encryption to the server by specifying the client keys in the
ListenAddress:Certificate block of a GPSS configuration file that you provide to the gpssc1i
subcommand via the --config gpsscliconfig.jsor1Opﬁon.Sanﬂﬂe gpsscliconfig.json

excerpt:
"ListenAddress": {

"Host"™: "",

"Port": 5019,

"Certificate": {
"CertFile": "/home/gpadmin/cert/gpsscli.crt",
"KeyFile": "/home/gpadmin/cert/gpsscli.key",
"CAFile": "/home/gpadmin/cert/root.crt"

68

Tanzu Greenplum Streaming Server

If you encrypt communications between the GPSS client and server, but you want to deactivate certificate
verification, specify the --no-check-ca option when you run the gpssc1i subcommand.

Configuring gpss and gpkafka for Kerberos Authentication
to Greenplum

If Kerberos authentication is enabled for Tanzu Greenplum, you must configure gpss to authenticate with
Kerberos.

GPSS uses a kerberos ticket, and the user name specified in the load configuration file, to connect to
Tanzu Greenplum.

1. Create a Kerberos principal for each Tanzu Greenplum user that will use GPSS to load data into
Greenplum.

2. Specify the principal name in the load configuration file user property value.

3. Generate a Kerberos ticket for this principal before you submit a load job with the gpssc1i submit,
gpsscli load, OF gpkafka load commands.

ﬁ If your Tanzu Greenplum Kerberos service name is not the default (postgres), set the
PGKRBSRVNAME environment variable to the correct service name before you start the gpss
service instance or run gpkafka load.

Configuring gpss for Kerberos Authentication to Kafka

If your Kafka version 0.9 and newer cluster is configured for Kerberos authentication, you must configure
GPSS to use this authentication method. You perform this configuration at both the gpss service instance
level and the GPSS client level.

GPSS is a Kafka client. You must create a Kerberos principal for the gpss server instance accessing
Kafka, and generate a keytab file for this principal. By default, GPSS runs kinit using this principal and
keytab to generate the Kerberos ticket.

You must set certain Kafka properties in your load configuration file to use Kerberos user authentication to
Kafka. The following table identifies keywords and values that you can add to the PROPERTIES Or
rdkafka prop (version 3) block in your load configuration file:

Keyword Value

security.protoc The Kafka security protocol. Obtain the value from the Kafka server server.properties configuration file.
ol GPSS supports the sast._ssi (Kerberos and SSL) and sast._pLAINTEXT (Kerberos, no SSL) protocols.

sasl.kerberos.k The absolute path to the GPSS or user Kerberos keytab file for Kafka on the local system.
eytab

sasl.kerberos.k The Kerberos kinit command string. If this property is not specified, GPSS uses the default value as
init.cmd described in 1ibrdkafka Global configuration properties when it runs the kinit command. If you do not
want GPSS to run kinit, setthe sasl.kerberos.kinit.cmd property to an empty value (") or no value.

69

https://docs.confluent.io/3.3.1/clients/librdkafka/CONFIGURATION_8md.html

Tanzu Greenplum Streaming Server

Keyword Value

saslkerberos.p The GPSS or user Kerberos service principal name; typically of the format <name>@<realm> or

rincipal <primary>/<instance>@<realm>.

sasl.kerberos.s The Kafka Kerberos principal name. Obtain the value from the Kafka server server.properties
ervice.name configuration file. The default Kafka Kerberos service name is kafka.

For example:

PROPERTIES:
security.protocol: SASL PLAINTEXT
sasl.kerberos.service.name: kafka
sasl.kerberos.keytab: /var/kerberos/krb5kdc/gpss.keytab
sasl.kerberos.principal: gpss/localhost@REALM.COM

sasl.kerberos.kinit.cmd:

If you are accessing Kafka using both Kerberos authentication and SSL encryption, you must also specify
the Kafka SSL properties identified in Configuring gpss and gpkafka for SSL-Encrypted Communications
with Kafka.

Configuring gpss for LDAP Authentication to Kafka

If your Kafka cluster is configured for LDAP authentication, you must configure GPSS to use this
authentication method. Set Kafka properties in your load configuration file as follows:

1. Edit the BROKERS to specify a broken that supports LDAP authentication.

2. Add keywords and values to the PROPERTIES Or rdkafka prop (version 3) block in your load
configuration file as needed:

Keyword Value

security.protocol Specify sast. pLAINTEXT as the Kafka security protocol when authenticating to LDAP.
sasl.mechanism Specify pLaIN for the security mechanism.

sasl.username Enter the LDAP user name.

sasl.password Enter the LDAP user password.

GPSS also supports using a shadow string for the LDAP user password with the gpsscli shadow
command. If you generate a shadowed password, specify the password using the format:

sasl.password: "SHADOW:<shadow password string>"

Configuring the Streaming Server for Client-to-Server
Authentication

You can configure a user name and password that GPSS will use for client-to-server authentication. When
you configure GPSS client authentication, you identify the credentials in the gpss. json server configuration
file. Users that access the GPSS server instance must then provide (a variation of) the credentials to any
gpsscli subcommand that they invoke as described below.

70

Tanzu Greenplum Streaming Server

You can configure client authentication as follows:

1.
2.

Identify a user name for authenticating.

Specify the user name in the Authentication:Username property setting of the gpss.json GPSS
server configuration file. For example:

"Authentication™: {
"Username": "client_auth username",
"Password": "<shadow_passwd_string>"

Identify a password for authenticating.

Optionally configure a shadow:Key, and then generate a shadowed password string from the
password as described in steps 1 and 2 of Shadowing the VMware Tanzu Greenplum Password.

Specify the shadow password string returned by gpsscli shadow in the
Authentication:Password property setting of the gpss.json GPSS server configuration file. For

example:
"Authentication": {
"Username": "client auth username",
"Password": "SHADOW:ERTBKXDWLAJHUF5UOGJY34QTXIBNYP4ULTWVHIUZIF4UYFPRIJVA"

Always quote the complete shadow password string.
(Re)Start the GPSS server.

Notify users of the GPSS server instance of the new client authentication requirements, and
provide them the user name and original (not shadowed) password.

All gpsscli subcommands directed to a GPSS server instance that is configured for client authentication

must specify the authentication credentials via the -U client auth username and -p original passwd

command line options. For example:

$ gpsscli submit -U client auth username -P changeme loadcfg.yaml

Enabling Prometheus Metrics Collection

With the VMware Tanzu Greenplum streaming server's out-of-the-box Prometheus integration, you can
obtain runtime metrics for a gpss server instance when you enable Prometheus monitoring for the UNIX

process.

The GPSS metrics available from Prometheus are:

Name Description

gpss_jobs_total The total number of jobs the gpss server instance is servicing.
gpss_jobs_running The number of jobs that are currently in the Running state.
gpss_process_cpu_seconds_total The total user and system CPU time (in seconds) for the GPSS server process.

gpss_process_open_fds The number of open file descriptors in the GPSS server instance process.

7

https://prometheus.io/docs/introduction/overview/

Tanzu Greenplum Streaming Server

Name Description
gpss_process_max_fds The maximum number of open file descriptors allowed for the GPSS server instance
process.

gpss_process_virtual_memory_bytes The virtual memory size (in bytes) of the GPSS server instance process.

gpss_process_virtual_memory_max_b The maximum virtual memory size (in bytes) of the GPSS server instance process.

ytes

gpss_process_resident_memory_byte The resident memory size (in bytes) of the GPSS server instance process.

S

gpss_process_start_time_seconds The start time of the GPSS server instance process since epoch (in seconds).

Prerequisites

GPSS uses the Prometheus stable HTTP API /api/v1. Before you enable Prometheus integration with
GPSS, ensure that:

You are running a Prometheus server compatible with the v1 API. If you are new to Prometheus,
you can download and install a Prometheus server as described in the Getting Started topic in the
Prometheus documentation.

Connectivity exists between the host on which you run the GPSS server instance and the host on
which the Prometheus server is running.

Enabling Prometheus Integration with GPSS

Prometheus collects metrics from monitored processes by scraping HTTP endpoints exposed by the
processes. Scraping pulls published statistics that allow you to aggregate and record time series data, or to
generate alerts.

To enable Prometheus integration with GPSS, you must:

1.

Identify the host name or IP Address and port number on which Prometheus will pull statistics from
the GPSS server instance. Both GPSS and Prometheus require this configuration information.

Add a Monitor property block to the gpss.json GPSS server configuration file that identifies the
address and port number from which GPSS will allow Prometheus to pull the server's statistics. For
example:

Monitor: {
Prometheus: {
Listening: "0.0.0.0:5001"

The 1istening property value specified in this block allows any Prometheus server host to pull
from port 5001.

Create a new, or update an existing, YAML-format Prometheus configuration file to include a GPSS
scrape target. For example, to configure Prometheus metrics collection for the GPSS server
instance running on the host named et1host that was configured with the Monitor block above,
copy/paste the following text into a file named prometheus gpss cfg.yml:

72

https://prometheus.io/docs/prometheus/latest/getting_started/

Tanzu Greenplum Streaming Server

global:

scrape_ interval: 15s # By default, scrape targets every 15 seconds.

A scrape configuration containing exactly one endpoint to scrape, GPPSS
scrape_configs:

The job name is added as a label “job=<job name>" to any timeseries

scraped from this config.

- job_name: 'gpss'

static_configs:
- targets: ['etlhost:5001"']

This configuration instructs Prometheus to pull metrics from port 5001 on et1host (the GPSS
server instance) every fifteen seconds.
4. Start the Prometheus server, specifying the configuration file that you updated or created for
GPSS:
$ prometheus --config.file=prometheus gpss cfg.yml &

5. Start the GPSS server:

$ gpss --config gpss.json &

Viewing GPSS Metrics

When you run a Prometheus server, metrics for integrated services are available at the default port 9090. To
view metrics for all services integrated with Prometheus, navigate to http://<prometheus host>:9090 in
your web browser of choice.

To view the metrics for a specific GPSS server instance, navigate to Status->Targets, and select the
GPSS Endpoint of interest.

The default Prometheus web user interface is rather low level. Once enabled, you can use the Prometheus
expression browser to generate and run ad-hoc queries on GPSS time series data.

To view graphs of GPSS metrics, enable Grafana integration as described in Grafana Support for
Prometheus in the Prometheus documentation.

73

https://prometheus.io/docs/visualization/grafana/

Tanzu Greenplum Streaming Server

About Loading Data with VMware Tanzu
Greenplum Streaming Server

You will perform the following tasks when you use the Greenplum Streaming Server (GPSS) to load data
into a VMware Tanzu Greenplum table:

1. Ensure that you meet the prerequisites, and that you have configured and started the Tanzu
Greenplum streaming server.

2. Identify the source and the format of the data and construct the load configuration file (optional).
3. Create the target VMware Greenplum table.

4. Assign VMware Greenplum role permissions to the table, if required, as described in Configuring
VMware Greenplum Role Privileges.

5. Run the GPSS client.

6. Verify the load operation as described in Checking for Load Errors.

Constructing the Load Configuration File

ﬁ The Tanzu Greenplum streaming server requires a load configuration file when you use the
gpsscli Or gpkafka client utilities to load data into Tanzu Greenplum. A load configuration
file is not required if you are using the Tanzu Greenplum Connector for Apache NiFi or a
custom GPSS client application.

You configure a load operation from a data source to Tanzu Greenplum via a YAML-formatted configuration
file as described in gpsscli.yaml. This configuration file includes properties that identify the data source and
format, information about the Tanzu Greenplum connection and target table, and error and commit
thresholds for the operation.

GPSS supports some pre-defined data formats, including Avro, binary, CSV, and JSON. GPSS also
supports custom data formats. Refer to Understanding Custom Formatters for information on developing
and using a custom formatter with GPSS.

GPSS supports version 1 (deprecated), version 2, and version 3 load configuration file formats. Versions 1
and 2 use a similar YAML structure. Version 3 introduces a new YAML structure, organization, and
keywords.

Refer to Constructing the gpkafka.yaml Configuration File for the YAML file format for a Kafka data source,
Constructing the filesource.yaml Configuration File for the YAML file format for a file data source, or
Constructing the rabbitmq.yaml Configuration File for a RabbitMQ data source.

74

Tanzu Greenplum Streaming Server

You may find a quick start guide and sample YAML configuration files under the
$SGPHOME /docs/cli help/gpss directory.

Creating the Target Greenplum Table

You are required to pre-create the target Greenplum table before you initiate a data load operation to Tanzu
Greenplum from a GPSS client. You must be able to identify both the schema name and table name of the
target table.

ﬁ The column data types that you specify for the target Tanzu Greenplum table are informed
by the data formats supported by the GPSS client.

Configuring VMware Tanzu Greenplum Role Privileges

If you load data to Tanzu Greenplum from a GPSS client using a non-admin Greenplum user/role, the
Greenplum administrator must assign the role certain privileges:

¢ The role must have usace and CREATE privileges on any non-public database schema where:
o The role writes data to a table in the schema, or

o gpss creates external tables.

For example:
=# GRANT USAGE, CREATE ON SCHEMA <schema name> TO <role name>;

e If the role writing to Tanzu Greenplum is not a database or table owner, the role must have seLECT
and TNSERT privileges on each Tanzu Greenplum table to which the role will write data:

=# GRANT SELECT, INSERT ON <schema name>.<table name> TO <role name>;

¢ The role must have permission to create readable external tables using the Tanzu Greenplum
gpfdist protocol:

=# ALTER ROLE <role name> CREATEEXTTABLE (type = 'readable', protocol = 'gpfdis
t');

Refer to the VMware Tanzu Greenplum Managing Roles and Privileges documentation for further information
on assigning privileges to Tanzu Greenplum users.

Do not directly sezECT from an external table that GPSS creates for your job. Any data that
you read in this manner will not be loaded into the Tanzu Greenplum table.

Running the Client

75

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/admin_guide-roles_privs.html

Tanzu Greenplum Streaming Server

You run a GPSS client to use the Tanzu Greenplum streaming server to load data into Tanzu Greenplum.
Installation, configuration, and run procedures for a GPSS client are client-specific. For example, refer to
the VMware Tanzu Greenplum Connector for Apache NiFi Documentation for the installation, configuration,
and run procedures for the Connector for Apache NiFi.

You can also use the gpsscli client command line utility to load data into Tanzu Greenplum.

Using the gpsscli Client Utility

The Tanzu Greenplum streaming server (GPSS) includes the gpssc1i client command utility. gpssc1i
provides subcommands to manage Tanzu Greenplum streaming server load jobs and to view job status and
progress:

Subcommand Description

convert Convert a version 1 or 2 load configuration file to version 3 format
dryrun Perform a trial load without writing to Tanzu Greenplum
help Display command help

list List jobs and their status

load Run one or more single-command load

progress Show job progress

remove Remove one or more jobs

start Start one or more jobs

status Show job status

stop Stop one or more jobs

submit Submit one or more jobs

wait Wait for a job to stop

All subcommands include options that allow you to specify the host and/or port number of the GPSS
instance that you want to service the request (--config or --gpss-host and --gpss-port). You can also
specify the directory to which GPSS writes gpsscli client log files (--10g-dir).

ﬁ The Tanzu Greenplum streaming server includes a client command utility named gpkafka.
gpkafka is a wrapper around the gpss and gpssc1i utilities that provides data load
capabilities to Greenplum from a Kafka data source. Refer to Loading Kafka Data into
Greenplum for information about loading data from Kafka into Tanzu Greenplum.

A typical command workflow when using gpsscli to load data into Tanzu Greenplum follows:
1. Submit a Tanzu Greenplum streaming server job.
2. Start the Tanzu Greenplum streaming server job.

3. (Optional) Check the status or progress of the Tanzu Greenplum streaming server job.

76

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum-connector-for-apache-nifi/1-1/gp-connector-nifi/index.html

Tanzu Greenplum Streaming Server

4. (Optional) Wait for a Tanzu Greenplum streaming server job to complete.

5. Stop the Tanzu Greenplum streaming server job.

6. Remove the Tanzu Greenplum streaming server job.
Alternatively, you can run a single-command load operation that submits a GPSS job on your behalf, starts
the job, displays job progress, and may stop the GPSS job. See Running a Single-Command Load.

About the gpsscli Return Codes

All gpssc1i subcommands return zero (0) on success and non-zero on failure. The specific return code
values and failure descriptions are identified in the table below.

Return Code Description

0 Success

1 Internal error

2 RPC error

3 Job error; the status of one or more jobs that the subcommand operated on is Error

About GPSS Job Identification

You identify a job by a name that you specify or a unique identifier that GPSS assigns. Job names must be
unique. Use the name to manage the job throughout its lifecycle.

GPSS uses a data source-specific combination of properties specified in the load configuration file to
internally identify a job. For example, when it loads from a Kafka data source, GPSS uses the Kafka topic
name, and the target Tanzu Greenplum, schema, and table names for internal job identification. GPSS
creates internal and external tables for each job that are keyed off of these properties; these tables keep
track of the progress of the load operation. GPSS considers any load configuration file submitted with the
same value for these job-identifying properties to be the same internal job.

You can find the GPSS job name under the application name columninthe pg stat activity system
view of Tanzu Greenplum.

About External Table Naming and Lifecycle

GPSS creates a unique external table to load data for a specific job directly into Tanzu Greenplum
segments. Kafka job external table names begin with the prefix gpkafkaloadext , file job external table
names begin with gpfileloadext . RabbitMQ job external table names begin with the prefix
gprabbitmgloadext . And by default, GPSS reuses this external table each time you restart the job.

The complete name and the lifecycle of a GPSS external table depends on the reuseTables setting in the
gpss.json server configuration file as described below.

ReuseTables=true

When rReuseTables is true (the default setting), GPSS reuses and does not drop an external table for a
job.

GPSS creates the external table using the following naming format: gp<datasource>loadext <hash>.

77

Tanzu Greenplum Streaming Server

GPSS calculates the <hash> based on values of server configuration properties and load/job configuration
properties that would change the external table definition. These properties include:

e Gpfdist host and port number

e Target Tanzu Greenplum schema name

e Target Tanzu Greenplum table name

e Target Tanzu Greenplum table definition

¢ Gpfdist use of encrypted communications

e Source data format

¢ Source data types

* Formatter options

* Job key; GPSS generates the job key as follows for the different data sources:

o Forfile and s3 jobs, GPSS generates the job key from the database name, metadata
schema name, target table name, and source URL.

o For Kafka jobs, GPSS generates the job key from the output schema and table names, or
the target schema names and table names plus source topic when the load job targets
multiple outputs.

o For RabbitMQ jobs, GPSS generates the job key from the database name, output schema
and table names, the RabbitMQ stream or queue name, and the RabbitMQ virtual host.

e Error Limit
ReuseTables=false

When reuseTables is false, GPSS drops an external table, if one exists, when a job is (re)started.

ﬁ Repeated drop/create of external tables may cause bloating in the pg attribute and
pg class system catalog tables; be sure to vacuuM these tables frequently.

GPSS creates the external table using the job name instead of a hash. The default job name is the base
name of the YAML load configuration file. You set a custom job name when you specify the -—name
<jobname> option to the gpsscli submit command.

The external table naming format when rReuseTables is false follows:

gp<datasource>loadext <jobname>.
Submitting a Job

To register a data load operation to Tanzu Greenplum, you submit a job to the Tanzu Greenplum streaming
server using the gpsscli submit subcommand. When you submit a job, you provide a YAML-formatted
configuration file that defines the properties of the load operation. Load properties include Greenplum-
specific options, as well as properties that are specific to the data source. See gpsscli.yaml.

You identify a GPSS job by a name that you provide via the --name option. If you do not specify a job
name, GPSS assigns and returns the base name of the load configuration file as the job identifier. You use

78

Tanzu Greenplum Streaming Server

this name or identifier to identify the job throughout its lifecycle.

The following example submits a GPSS job named order upload whose load properties are defined in the
configuration file named 1oadcfg. yaml:

$ gpsscli submit --name order upload loadcfg.yaml
A newly-submitted GPSS job is in the Submitted state.

Starting a Job

To start a GPSS job, you run the gpsscli start subcommand. When you start a job, GPSS initiates the data
load operation from the client. It sets up the connection to Tanzu Greenplum and creates the external tables
that it uses to load data directly into Greenplum segments.

The following example starts the GPSS job named order upload:

$ gpsscli start order upload

A job that starts successfully enters the Running state.

The default behaviour of gpsscli start is to return immediately. When you specify the --quit-at-eof
option, the command reads data until it receives an EOF, and then stops the job. In this scenario, the job
transitions to the Success or Error state when the command exits.

Checking Job Status, Progress, History

GPSS provides several commands to check the status of a running job(s):

e The gpsscli list subcommand lists running (or all) jobs and their status:

$ gpsscli list --all

JobName JobID GPHost GPPort DataBas
e Schema Table Topic Status

order_upload d577c£37890b5b6bf4e713a9586e86¢c9 sysl 5432 testdb
public order_sync orders JOB_RUNNING

file jobf3 cfb985bcdc8884352b4b8853f5d06bbe sysl 5432 testdb
public from csvfile file:///tmp/data.csvJOB_STOPPED

e The gpsscli status subcommand displays the status of a specific job:

$ gpsscli status order upload
...,101565,info,Job order upload, status JOB RUNNING, errmsg [], time 2020-08-0
4T16:44:03.376216533%Z

Use the gpsscli status command to determine the status or success or failure of the operation.
If the job status is Error, you will want to examine command output and log file messages for
additional information. See Checking for Load Errors.

e The gpsscli progress subcommand displays the progress of a running Kafka job. The command
waits, and displays the job commit history and transfer speed at runtime. gpsscli progress
returns when the job stops.

79

Tanzu Greenplum Streaming Server

ﬁ GPSS currently supports job progress tracking only for Kafka data sources.

$ gpsscli progress order upload

StartTime EndTime MsgNum MsgSize
InsertedRecords RejectedRecords Speed

2019-10-15T721:56:49.950134%2 2019-10-15T21:56:49.9647512 1000 78134
1000 0 735.13KB/sec

2019-10-15T721:56:49.976231%2 2019-10-15T21:56:49.9843112 1000 77392
1000 0 701.58KB/sec

2019-10-15T721:56:49.9936072 2019-10-15T21:56:50.0036022 1000 77194
1000 0 723.32KB/sec

By default, gpsscli progress displays job progress by batch. To display job progress by partition,
specify the --partition option to the subcommand:

S gpsscli progress order upload --partition

PartitionID StartTime EndTime Begi
nOffset EndOffset MsgSize Speed

0 2019-10-15T21:56:54.80469% 2019-10-15T21:56:54.830441%2 2420
00 243000 81033 652.29KB/sec

0 2019-10-15T721:56:54.846354% 2019-10-15T21:56:54.8805172 2430
00 244000 81021 675.12KB/sec

0 2019-10-15T721:56:54.8930972 2019-10-15T21:56:54.904745%2 2440
00 245000 80504 673.67KB/sec

GPSS also keeps track of the progress of each Kafka load job in a separate CSV-format log file.
The job progress log files, named progress <jobname> <jobid> <date>.log, reside in the GPSS
server log directory. Refer to the Kafka data source Checking the Progress of a Load Operation
topic for more information.

Waiting for a Job to Complete

You can use the gpsscli wait subcommand to wait for a running job to complete. A job is complete when
there is no more data to read, or when an error is returned. Such jobs transition from the Running state to
the Success or Error state.

$ gpsscli wait order upload
gpsscli wait exits when the job completes.
Stopping a Job

Use the gpsscli stop subcommand to stop a specific job. When you stop a job, GPSS writes any unwritten
batched data to the Tanzu Greenplum table and stops actively reading new data from the data source.

$ gpsscli stop order upload
A job that you stop enters the Stopped state.

Removing a Job

80

Tanzu Greenplum Streaming Server

The gpsscli remove subcommand removes a GPSS job. When you remove a job, GPSS unregisters the job
from its job list and releases all job-related resources.

$ gpsscli remove order upload

Running a Single-Command Load

The gpsscli load subcommand initiates a data load operation. When you run gpsscli load, GPSS
submits, starts, and displays the progress (Kafka job only) of a job on your behalf.

By default, gpsscli load loads all available data and then waits indefinitely for new messages to load. In
the case of user interrupt or exit, the GPSS job remains in the Running state. You must explicitly stop the
job with gpsscli stop when running in this mode.

When you provide the --quit-at-eof option to the command, the utility exits after it reads all published
data, writes the data to Tanzu Greenplum, and stops the job. The GPSS job is in the Success or Error state
when the command returns.

Similar to the gpsscli submit command, gpsscli load takes as input an optional name and a YAML-
format configuration file that defines the load properties:

$ gpsscli load --quit-at-eof loadcfg.yaml

Because the above command does not specify the --name option, GPSS assigns and returns the job
identifier 10adcfg when you run it.

About GPSS Job Initiation and Scheduling

In the default configuration, GPSS relies on the gpssc1i subcommands that you submit to initiate and stop
jobs. Once a job is started, GPSS does not automatically (re)start the job, and GPSS stops a job only when
you have specified the --quit-at-eof option to the gpssc1i subcommand.

You can configure GPSS to automatically stop and restart failed and running jobs via scheduling properties

that you specify in the load configuration file.

About Registering for Job Stopped Notification

You can register to be notified when a job is stopped for any reason (success, error, completed, user-
initiated stop) via alert properties that you specify in the load configuration file. When a job stops, GPSS will
invoke a command that you specify.

About Retrying a Failed Job

You can configure GPSS to restart a failed job after a period of time that you specify; you can also
configure the maximum number of times that GPSS retries the job. The load configuration file properties
that govern failed job retry are located in the scHEDULE: block.

Refer to Auto-Restarting a Failed Job for additional information about retrying a failed job.

About Job Scheduling

81

Tanzu Greenplum Streaming Server

You can configure GPSS to automatically stop a running job after it has run for a period of time, or at a
specific clock time after receiving an EOF. You can also configure a restart interval and the maximum
number of times GPSS should restart a job that it stopped. The load configuration file properties that govern
job scheduling in GPSS are also located in the scHEDULE: block.

Checking for Load Errors

The Tanzu Greenplum streaming server cannot directly return success or an error to the client. You can
obtain success and error information for a GPSS load operation from gpsscli subcommand output, and
from messages that GPSS writes to stdout or writes to the server, progress (Kafka jobs only), and/or client
log files.

You can also view data formatting-specific errors encountered during a load operation in the error log.
Error checking activity may include:

¢ Examining GPSS Log Files

¢ Determining Batch Load Status

e Diagnosing an Error with a Trial Load

¢ Reading the Error Log

¢ Auto-Restarting a Failed Job

¢ Redirecting Data to a Backup Table when GPSS Encounters Expression Evaluation Errors

¢ Preventing External Table Reuse

Examining GPSS Log Files

GPSS writes server and client log messages to files as described in Managing GPSS Log Files.

GPSS Version Log File Content

1.4.0 and older <date>:<time> <proc>:<user>:<host>:<proc pid>-[<severity>]:-<message>
1.4.1-19x timestamp,pid, level, message (header row, CSV format)

1.10.0 and newer timestamp, pid, level,message (client log file header row, CSV format)

timestamp,job id,pid, level, message (server log file header row, CSV format)
Example message in a gpss log file:
20230427 15:17:22.95110,-,31424,info,gpss listening on :5000

GPSS writes at most the first 8 characters of a job identifier, or writes - when the message is not job-
specific.

Example message in a gpsscli log file:

20230427 16:28:46.39607,1305,info,"JobID: 593347a306al1f9439a127b982b2f891f, JobName: ni
ghtly load"

Determining Batch Load Status

82

Tanzu Greenplum Streaming Server

To determine if GPSS loaded one or more batches of data to Tanzu Greenplum successfully, first examine
the status and progress of the job in question. The gpsscli status and gpsscli progress command
output will identify if any known error conditions exist.

Also examine gpss command output and logs, searching for messages that identify the number of rows
inserted and rejected. For a Kafka or RabbitMQ data source, search for:

-[INFO]:- ... Inserted 9 rows
-[INFO]:- ... Rejected 0 rows

Or, for load jobs originating from a file data source:

-[INFO]:- ... inserted 5, rejected 1

Diagnosing an Error with a Trial Load

When a Kafka, file, or S3 job fails, you may choose to perform a trial run of the load operation to help
diagnose the cause of the failure. The gpsscli dryrun command reads the data from the source and
prepares to load the data, but does not actually insert it into Tanzu Greenplum. The command returns the
results of this processing, as well as the SQL commands that GPSS would run to complete the job.

Sample command that specifies a Kafka load configuration file:
$ gpsscli dryrun --include-error-process kjobcfgv3.yaml
Sample command output:

jobid: 01ba08c0f7fc8e3ad49%9e2adleed8ef899

jobname: kjobcfgv3

jobtype: KafkaJdob

tracking table name: gpkafka_tbl 1 column_text 01ba08cOf7fc8e3ad4%e2adleed8ef899
progress log file name: progress_kjobcfgv3 01ba08c0_20220218.1og

Extension version checking:

<SQL commands to check extension versions>

SQL of job:
<SQL commands to fullfil the load operation>

Because the --include-error-process flag was specified for the Kafka job dry run, the output may
include the following text:

Check format error:
error sqgl query: <query>

clean up error table: <query>
Check failed batch with expression error:
get failing batch query: <query>
Reading the Error Log

If gpss command or log output indicates that rows were rejected, the output will identify an SQL query that
you can run to view the data formatting errors that GPSS encountered while inserting data into a Tanzu

83

Tanzu Greenplum Streaming Server

Greenplum table.

GPSS uses the 1.oG ERRORS feature of Tanzu Greenplum external tables to detect and log data rows with
formatting errors. The functions that you use to access and manage the error log, and the persistence of
the error data, depend on the version of Tanzu Greenplum that you are running GPSS against and the
ReuseTables setting in effect when you started the gpss server.

If you are running GPSS against VMware Greenplum versions 5.26+ or 6.6+ and you started the gpss
server with ReuseTables=false:

¢ GPSS automatically specifies .0G ERRORS PERSISTENTLY When it creates external tables for a job.
¢ You use the gp read persistent error log() function to retrieve the error data.
e The error data persists in the error log, and stays around until you explicitly remove it.

If you are running GPSS against older 5.x and 6.x versions of Greenplum, or you started the gposs server

With ReuseTables=true:
* Youusethe gp read error log() function to retrieve the error data.

e The error data is accessible from the error log until GPSS drops the external table. (If the gpss
server is started with ReuseTables=true, GPSS does not drop an external table for a job. If
ReuseTables=false, GPSS drops an external table, if one exists, when a job is (re)started.)

Refer to the Tanzu Greenplum CREATE EXTERNAL TABLE documentation for more information about the
external table error logs and error log management.

When you run the query to view the error log, you specify the name of the external table that GPSS used
for the load operation. You identify the name of the external table by examining the gpss command output
and/or log file messages. For best results, use the (short) time interval identified in the gpss output.

Kafka job external table names begin with gpkafkaloadext , file job external table names begin with
gpfileloadext , and RabbitMQ job external table names begin with gprabbitmgloadext .

The following example query displays the number of errors returned in a Kafka load job:

SELECT count (*) FROM gp read error log('"public"."gpkafkaloadext ae0eac9f8c94a487£f30£f7
49175c3afbf"")
WHERE cmdtime > '2018-08-10 18:44:23.814651+00"';

Warning Do not directly seLecT from an external table that GPSS creates for your job. Any data that you
read in this manner will not be loaded into the Tanzu Greenplum table.

Auto-Restarting a Failed Job

A job may fail for temporary reasons. You can configure GPSS to automatically restart an errored job.
GPSS automatic job restart is deactivated by default. When the YAML-format load configuration file
submitted for a job includes the non-default scHEDULE: block MAX RETRIES and RETRY INTERVAL
configuration settings, GPSS will attempt to restart the job if the job enters the Error state after it starts.

GPSS stops trying to restart the job when the configured retry limit is reached, or if the job is removed or
the job configuration is updated during retry.

Jobs that you start via the gpsscli start, gpsscli load, and gpkafka load commands are eligible for
automatic job restart on error. If you provide the --quit-at-eof flag or one of the --force-reset-*xxx*

84

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-sql_commands-CREATE_EXTERNAL_TABLE.html

Tanzu Greenplum Streaming Server

flags when you run the command and the Kafka or RabbitMQ job load configuration file specifies failed job
retry settings, GPSS ignores the flag on any retry attempts that it initiates.

Redirecting Data to a Backup Table when GPSS Encounters
Expression Evaluation Errors

GPSS catches data formatting errors during loading, and you can view these errors with
gp_read error log() as described in Reading the Error Log.

There may be cases where your data is formatted correctly, but GPSS encounters an error when it
evaluates a mapping or a filter expression. If the evaluation fails, GPSS cannot log and propagate the error
back to the user.

For example, if you specify the following mapping expression in your load configuration file:
EXPRESSION: (jdata->>'id') ::int
and the content of jdata->>'id" is a string that includes non-integer characters, the expression will fail

when Tanzu Greenplum evaluates it.

The load configuration property coMMIT: SAVE FATILING BATCH (versions 2 and 3 load configuration file
formats only) governs whether or not GPSS saves a batch of data into a backup table before it writes the
data to Tanzu Greenplum. Saving the data in this manner aids loading recovery when GPSS encounters
errors during the evaluation of expressions.

By default, savE FAILING BATCH iS false, and GPSS immediately terminates a load job when it
encounters an expression error.

When you set save FAILING BATCH to true, GPSS writes all data in the batch to a backup table named
gpssbackup <jobhash>. GPSS writes both good and bad data to the backup table.

A backup table has the following columns:

Column Name Description

data The data associated with the row that GPSS attempted to load into Tanzu Greenplum.
gpss_save_timestamp The time that GPSS inserted the row into the backup table.

gpss_expression_error The error that GPSS encountered when it ran the expression specified in the column mapping.
Sample backup table content for a failed load operation follows:

test=# SELECT * from gpssbackup_ e0c5991570303703450bbac2ee8816bc;

-[RECORD 1]J]-—-——-——-———- to-m
data | {"device": "agkNtzFnHIVASYNvo", "humidity": 91.3, "temperatur
e": 9, "time": "2019-09-24T15:33:57.054175"}

gpss_save_ timestamp | 2022-07-04 07:51:17.798469+00

gpss_expression error | division by zero

-[RECORD 2]--=-=-—-—-—--- e e e L e a E ata L a E e a E a
data | {"device": "LcZQGnVXhORIKxWY", "humidity": 46.289, "temperatur
e": 9, "time": "2019-09-24T15:33:57.054561"}

85

Tanzu Greenplum Streaming Server

gpss_save_ timestamp | 2022-07-04 07:51:17.798469+00

gpss_expression error | division by zero

GPSS continues to process Kafka messages even after it encounters an expression error. When GPSS
encounters one or more expression errors in a batch, none of the good data in the batch is written to
Greenplum. You can set the RECOVER FATLING BATCH (Beta) configuration property to instruct GPSS to
automatically reload the good data in the batch, and retain only the error data in the backup table. GPSS
displays additional information about the recovery process when you set this option.

ﬁ Using a backup table in this manner to hedge against expression errors may impact
performance, especially when the data that you are loading has not been cleaned.

Preventing External Table Reuse

GPSS creates a unique external table to load data for a specific job directly into Tanzu Greenplum
segments. By default, GPSS reuses this external table each time you restart the job. If the structure of
either the source data or the destination Tanzu Greenplum table is altered, GPSS may not be able to reuse
the external table it initially created for the job.

You can configure GPSS to create a new external table for all new and restarted jobs submitted to a gpss
service instance by setting the reuseTables configuration property to false in the gpss.son file.

Understanding Custom Formatters
This topic describes custom formatters and how to use them with VMware Tanzu Greenplum streaming
server.

A custom formatter is a C function that performs specific formatting or processing on data that is accessed
by a Tanzu Greenplum external table. A custom formatter may support options that you provide to direct the
processing performed by the function. Greenplum includes built-in and custom formatters. You can also
develop your own custom formatter.

You compile the C custom formatter functions that you develop into a shared library. These functions are
available to Tanzu Greenplum users after the shared library is installed in the Tanzu Greenplum cluster and
the custom formatter functions are registered as SQL UDFs.

This topic includes the following sections:
¢ Developing a Custom Formatter for GPSS

¢ Using a Custom Formatter in GPSS

Developing a Custom Formatter for GPSS

A custom formatter is a PostgreSQL C language function; refer to C-Language Functions in the PostgreSQL
documentation for detailed information about developing C language functions.

Important header files for custom formatter development include: postgres.h, access/formatter.h, and
fmgr.h. These headers define the functions and macros required to interact with PostgreSQL and formatter
C structures.

86

https://www.postgresql.org/docs/9.4/xfunc-c.html

Tanzu Greenplum Streaming Server

See Custom Formatter for Kafka for a GPSS- and Kafka-specific custom formatter example.

You can develop and test a custom formatter against a Tanzu Greenplum external table that specifies the
file: protocol in the LocaTTon URI. Any custom formatter that you develop and test in this fashion should
be compatible with GPSS.

The remainder of this topic describes special considerations when developing a custom formatter for use
with GPSS.

About Data Boundaries

GPSS handles data boundaries from the source; a custom formatter can expect to receive a complete
Kafka message. Certain formatter API calls are expected to behave differently than a typical Tanzu
Greenplum formatter:

e FORMATTER SET DATACURSOR () has no effect.

e FORMATTER GET DATALEN () always returns the full size of the message. The message is
guaranteed to be complete.

e FORMATTER GET DATACURSOR () always retums o.

¢ GPSS throws an error when the custom formatter returns FMT NEED MORE DATA.

Handling Bad Data

When the custom formatter encounters an unrecoverable error, it should invoke ereport () with the error
code ERRCODE _INTERNAL ERROR (Or its siblings) to indicate that the process should be terminated. The bad
row data will not be written to the error log in this case.

If the custom formatter encounters an ignorable error and the data loading should continue, it should invoke
ereport () with the error code ERRCODE DATA EXCEPTION (or its siblings). In this scenario, GPSS writes the
bad row data to the error log automatically.

The GPSS extension invokes the FORMATTER SET BaD rRow DATA () function; the function has no effect
when invoked by the custom formatter.

Known Issues

Tanzu Greenplum truncates bad row data written to the error log at the first 0x00 byte. As a result, the
gp read error log() and gp read persistent error log() functions may return an incomplete

rawbytes.

Building the Custom Formatter Shared Library with PGXS

You compile the custom formatter function that you write into a shared library that the Tanzu Greenplum
server loads on demand.

You can use the PostgreSQL build extension infrastructure (PGXS) to build the source code for your
custom formatter function against a Tanzu Greenplum installation. This framework automates common build
rules for simple modules. If you have a more complicated use case, you must write your own build system.

To use the PGXS infrastructure to generate a shared library for a custom formatter function that you
develop, create a simple Makefile that sets PGXS-specific variables.

87

Tanzu Greenplum Streaming Server

ﬁ Refer to Extension Building Infrastructure in the PostgreSQL documentation for information
about the Makefile variables supported by PGXS.

For example, the following Makefile generates a shared library named customfmt example.so fromaC
source file named customfmt.c:

MODULE _big = customfmt example

OBJS = customfmt.o

PG_CPPFLAGS = -I$(shell $(PG_CONFIG) --includedir)
SHLIB_LINK = -L$(shell $(PG_CONFIG) --libdir)

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $ (PGXS)

MODULE big identifes the base name of the shared library generated by the Makefile.

PG_CPPFLAGS adds the Tanzu Greenplum installation include directory to the compiler header file search
path.

SHLIB LINK adds the Tanzu Greenplum installation library directory to the linker search path.

The pG_coNFIG and pGxs variable settings and the include statement are required and typically reside in
the last three lines of the Makefile.

Registering the Custom Formatter Function with Tanzu Greenplum

Before you can use a custom formatter, you must register the function with Tanzu Greenplum.

Registering the function involves mapping the function signature to a SQL user-defined function. You define
this mapping with the crREATE FuNCTTON .. As command specifying the shared library name. You may
choose to use the same name or differing names for the custom formatter and SQL functions.

Sample CREATE FUNCTION ... AS syntax follows:
CREATE FUNCTION <sgl function_ name>(<arg>[, ...]) RETURNS <return type>
AS '<shared library path>'[, '<formatter function name>']

LANGUAGE C STABLE;

You may omit the shared library . so extension when you specify shared library path.

The following command registers a C function named customfmt import () to a SQL UDF named
customfmt in () when the function is compiled and linked in a shared library named

customfmt example.so:

CREATE FUNCTION customfmt in () RETURNS record
AS 'customfmt example.so', 'customfmt import'
LANGUAGE C STABLE;

Using a Custom Formatter in GPSS

88

https://www.postgresql.org/docs/9.4/extend-pgxs.html

Tanzu Greenplum Streaming Server

Any Tanzu Greenplum external table custom formatter is compatible with, and may be specified for, a
value-only GPSS job.

You can use a custom formatter in your GPSS load job by identifying the custom data format and providing
the formatter function name and parameters in the load configuration file. The names of these properties
differ in version 2 and version 3 format configuration files. Version 2 format example:

FORMAT: custom
CUSTOM_OPTION:
NAME: formatter_ in
PARAMSTR: aaa="test",bbb="123"

Version 3 format example:

custom:

columns:

- name: value

type: text

name: formatter_ in
options:

- aaa="test"

- bbb="123"

When you specify a custom formatter in your GPSS load configuration file, GPSS invokes the formatter to
process the data before loading it into Tanzu Greenplum.

Understanding Transformer Plugins
A transformer plugin is a set of go functions that perform specific formatting or processing on data after is
read from a Kafka or RabbitMQ data source.

This topic describes transformer plugins and how to use them with VMware Tanzu Greenplum streaming
server:

¢ Developing a Transformer Plugin for GPSS
¢ Using a Transformer Plugin in GPSS

Developing a Transformer Plugin for GPSS
A transformer plugin is a set of go functions. You compile the go functions that you develop into a shared
library. Users of the plugin specify the file system path to this library in the GPSS load configuration file.
The GPSS transformer plugin framework exposes two entry points:
¢ Plugin initialization function - GPSS invokes this function once when it loads the transformer plugin.
¢ Plugin transform function - GPSS invokes this function for every message it reads from the source.

The framework supports specifying properties that direct the processing performed by the transformer.
GPSS passes any transformer properties specified in the load configuration file to the go functions. The
transformer-related load configuration properties are described further in Using a Transformer Plugin in
GPSS.

89

Tanzu Greenplum Streaming Server

Using a Transformer Plugin in GPSS

To use a transformer plugin in a Kafka or RabbitMQ data job, you must specify an INPUT : TRANSFORMER
(version 2) or sources:<source>:transformer (version 3) block in the load configuration file. The
properties in this block identify the file system path to the transformer plugin library, the initialization and
transform function names, and transform-specific properties that GPSS passes to the functions.

Version 2 format syntax:

[TRANSFORMER:
PATH: <path to plugin_transform library>
ON_INIT: <plugin transform init name>
TRANSFORM: <plugin_transform_name>
PROPERTIES:
<plugin_transform property name>: <property value>

[

Version 3 format syntax:

transformer:
path: <path to plugin transform library>
on_init: <plugin_transform_init name>
transform: <plugin transform name>
properties:
<plugin_ transform property name>: <property value>

When you specify a transformer plugin in your GPSS load configuration file, GPSS invokes the transform
function to process the data after it applies an input filter (if specified).

Understanding UDF Transformers

A user-defined function (UDF) transformer is a function that perform specific formatting or processing on
data before it is written to VMware Tanzu Greenplum. All GPSS data sources (file, Kafka, RabbitMQ, s3)
support UDF transformers.

This topic describes UDF transformers and how to use them with VMware Tanzu Greenplum streaming
server:

¢ Developing a UDF Transformer for GPSS
¢ Using a UDF Transformer in GPSS

Developing a UDF Transformer for GPSS
A UDF transformer is a function. You create and register the function with Greenpum Database. Users of
the UDF specify the name of the function in the GPSS load configuration file.

The framework supports specifying properties that direct the processing performed by the UDF. GPSS
passes any transformer properties specified in the load configuration file to the function. The UDF
transformer-related load configuration properties are described further in Using a UDF Transformer in GPSS.

A UDF transformer function signature follows:

90

Tanzu Greenplum Streaming Server

<function name>(<s> anyelement, <properties> json)

The anyelement input argument and the function return columns must have the same table structure as the
output table.

Using a UDF Transformer in GPSS

To use a UDF transformer in a GPSS job, you must specify an ouTPUT : TRANSFORMER (version 2) or
targets:gpdb:tables:table:transformer (version 3) block in the load configuration file. The properties
in this block identify the UDF transform function name and transform-specific properties that GPSS passes
to the function.

Version 2 format syntax:

[TRANSFORMER:
PATH: <path to_plugin_transform library>
ON_INIT: <plugin_transform_init name>
TRANSFORM: <plugin_transform_name>
PROPERTIES:
<plugin transform property name>: <property value>

I oo0 11
Version 3 format syntax:

transformer:
transform: <udf_transform_udf name>
properties:

<udf transform property name>: <property value>

columns:

- <udf_transform_column_name>

n GPSS currently supports specifying only one of the mapping or (UDF) transformer blocks
in the load configuration file, not both.

Example

The following UDF adds a prefix to a name and adds an increment to an age. The prefix is specified in a
function property named name-prefix, the age increment in a property named age-increment:

CREATE FUNCTION simple mapping (s anyelement, properties json)

RETURNS table(id bigint, name text, age int)

AS $$ SELECT ((s.key)->>'id')::bigint, (properties->>'name-prefix')::text]|| ((s.valu
e)->>"name') ::text, (properties->>'ag-increment')::int+(s.value)->>'age'::int;

$$ LANGUAGE sql;

To use this UDF in a GPSS job, specify the following in a version 2 load configuration file:

91

Tanzu Greenplum Streaming Server

TRANSFORMER:
TRANSFORM: simple mapping
PROPERTIES:
name-prefix: 'Dear '

age-increment: 10

With this configuration, the prefix pear is prepended to the name and 10 is added to the age before the
data is written to Tanzu Greenplum

Internally, GPSS writes to the target table using the following SQL command:

INSERT INTO tbl target (id,name,age) FROM
SELECT f.id, f.name, f.age FROM
tbl source s, simple mapping(s,'{age-increment":"10", "name-prefix":"Dear "}'::jso
n) f;

92

Tanzu Greenplum Streaming Server

Loading Kafka Data into Greenplum

ﬁ The VMware Tanzu Greenplum streaming server Kafka data source is also known as the
Greenplum-Kafrka Integration.

Apache Kafka is a fault-tolerant, low-latency, distributed publish-subscribe message system. The Tanzu
Greenplum streaming server supports loading Kafka data from the Apache and Confluent Kafka
distributions. Refer to the Apache Kafka Documentation for more information about Apache Kafka.

A Kafka message may include a key and a value, and may be comprised of a single line or multiple lines.
Kafka stores streams of messages (or records) in categories called topics. A Kafka producer publishes
records to partitions in one or more topics. A Kafka consumer subscribes to a topic and receives records in
the order that they were sent within a given Kafka partition. Kafka does not guarantee the order of data
originating from different Kafka partitions.

You can use the gpsscli or gpkafka load utilities to load Kafka data into VMware Tanzu Greenplum.

ﬁ gpkafka load is a wrapper around the Tanzu Greenplum streaming server gpss and
gpsscli commands. VMware recommends that you migrate to using these utilities directly.

Both the gpss server and the gpkafka load utilities are a Kafka consumer. They ingest streaming data
from a single Kafka topic, using Tanzu Greenplum readable external tables to transform and insert or update
the data into a target Greenplum table. You identify the Kafka source, data format, and the Greenplum
connection options and target table definition in a YAML-formatted load configuration file that you provide to
the utility. In the case of user interrupt or exit, the utility resumes a subsequent data load operation
specifying the same Kafka topic and target Tanzu Greenplum table names from the last recorded offset.

Requirements

The Tanzu Greenplum streaming server requires Kafka version 0.11 or newer for exactly-once delivery
assurance. You can run with an older version of Kafka (but lose the exactly-once guarantee) by adding the
following PROPERTIES Of rdkafka prop (vV3) block to your gpkafka.yaml load configuration file:

PROPERTIES:
api.version.request: false

broker.version.fallback: 0.8.2.1

Load Procedure

93

http://kafka.apache.org/documentation/

Tanzu Greenplum Streaming Server

You will perform the following tasks when you use the Tanzu Greenplum streaming server to load Kafka
data into a Tanzu Greenplum table:

1. Ensure that you meet the Prerequisites.

Register the Tanzu Greenplum streaming server extension.
Identify the format of the Kafka data.

(Optional) Register custom data formatters.

Construct the load configuration file.

Create the target Tanzu Greenplum table.

Assign Tanzu Greenplum role permissions to the table, if required.

Run the gpkafka load command to load the Kafka data into Tanzu Greenplum.

© ©®© N o o M W b

Check the progress of the load operation.

—
©

Check for load errors. (Note that the naming format for gpkafka log files is gpkafka *date*.log.)

Prerequisites
Before using the gpsscl1i or gpkafka utilities to load Kafka data to Tanzu Greenplum, ensure that you:

¢ Meet the Prerequisites documented for the Tanzu Greenplum Streaming Server, and configure and
start the server.

e Have access to a running Kafka cluster with ZooKeeper, and that you can identify the hostname(s)
and port number(s) of the Kafka broker(s) serving the data.

¢ Can identify the Kafka topic of interest.

e Can run the command on a host that has connectivity to:
o Each Kafka broker host in the Kafka cluster.

o The Tanzu Greenplum coordinator and all segment hosts.

About Supported Kafka Message Data Formats

The Tanzu Greenplum streaming server supports Kafka message key and value data in the following
formats:

Format Description

avro Avro-format data. GPSS supports:

e Loading Kafka message key or value data from a single-object encoded Avro file.

e Using the Avro schema of a Kafka message key and/or value registered in a Confluent Schema
Registry to load Avro-format key and/or value data.

e Using the Avro schema specified in a separate .zvsc file located on each Tanzu Greenplum
segment host file system to load Avro-format key or value data, but not both.

In all cases, GPSS reads Avro data from Kafka only as a single JSON-type column.

GPSS supports 1ibz-, 1zma- and snappy-compressed Avro data from Kafka.

binary Binary format data. GPSS reads binary data from Kafka only as a single bytea-type column.

94

Tanzu Greenplum Streaming Server

Format Description
csv Comma-delimited text format data.
custom Data of a custom format, parsed by a custom formatter function.
delimited Text data separated by a configurable delimiter. The “delimited” data format supports a multi-byte delimiter.
json, jsonl JSON- or JSONB-format data. Specify the json format when the file is in JSON or JSONB format. GPSS can
(version 2 read JSON data as a single object or can read a single JSON record per line. You must define a mapping if
only) you want GPSS to write the data into specific columns in the target Tanzu Greenplum table.

ﬁ Note: GPSS supports JSONB-format data only when loading to Greenplum 6.

ﬂ Note: Specify FORMAT: jsonl in version 2 format load configuration files. Specify json

with is jsonl: true inversion 3 formatload configuration files.

To write Kafka message data into a Tanzu Greenplum table, you must identify the data format in the load
configuration file.

Avro

Specify the avro format when your Kafka message data is a single-object encoded Avro file or you are
using the Confluent Schema Registry to load Avro message key and/or value data. (If the schema registry
is SSL-secured, refer to Accessing an SSL-Secured Schema Registry for configuration details.) GPSS
reads Avro data from Kafka and loads it into a single JSON-type column. You must define a mapping if you
want GPSS to write the data into specific columns in the target Tanzu Greenplum table.

Binary

Use the binary format when your Kafka message data is a stream of bytes. GPSS reads binary data from
Kafka and loads it into a single bytea-type column.

csv

Use the csv format when your Kafka message data is comma-delimited text and conforms to RFC 4180.
The message content may not contain line ending characters (CR and LF).

Data in csv format may appear in Kafka messages as follows:

"1313131","12", "backorder™,"1313.13"
"3535353","11", "shipped", "761.35"
"7979797","11", "partial™,"18.72"

Custom

The Tanzu Greenplum streaming server provides a custom data formatter plug-in framework for Kafka
messages using user-defined functions. The type of Kafka message data processed by a custom formatter
is formatter-specific. For example, a custom formatter may process compressed or complex data.

95

https://tools.ietf.org/html/rfc4180

Tanzu Greenplum Streaming Server

Refer to Custom Formatter for Kafka for an example custom formatter that loads Kafka data into Tanzu
Greenplum.

Delimited Text

The Tanzu Greenplum streaming server supports loading Kafka data delimited by one or more characters
that you specify. Use the delimited format for such data. The delimiter may be a multi-byte value and up

to 32 bytes in length. You can also specify quote and escape characters, and an end-of-line prefix.

[

The delimiter may not contain the quote or escape characters.

When you specify a quote character:

The left and right quotes are the same.
Each data element must be quoted. GPSS does not support mixed quoted and unquoted content.
You must also define an escape character.

GPSS keeps the original format of any character between the quotes, except the quote and escape
characters. This especially applies to the delimiter and \n, which do not require additional escape if
they are quoted.

The quote character is presented as the escape character plus the quote character (for example,
\")‘

The escape character is presented as the escape character plus the escape character (for
example, \)

GPSS parses multiple escape characters from left to right.

When you do not specify a quote character:

The escape character is optional.

If you do not specify an escape character, GPSS treats the delimiter as the column separator, and
treats any end-of-line prefix plus \n as the row separator.

If you do specify an escape character:
o GPSS uses the escape character plus the delimiter as the column separator.
o GPSS uses the escape character plus the end-of-line prefix plus \n as the row separator.
o The escape character plus the escape character is the escape character itself.

o GPSS parses multiple escape characters from left to right.

Sample data using a pipe (|') delimiter character follows:

131313112 |backorder|1313.13
3535353 |11 |shipped|761.35
7979797111 |partial|18.72

JSON (single object)

96

Tanzu Greenplum Streaming Server

Specify the json format when your Kafka message data is in JSON or JSONB format and you want GPSS
to read JSON data from Kafka as a single object into a single column (per the JSON specification, newlines
and white space are ignored). You must define a mapping if you want GPSS to write the data into specific
columns in the target Tanzu Greenplum table.

ﬁ GPSS supports JSONB-format data only when loading to Greenplum 6.

JSON (single record per line)

Specify FORMAT: jsonl in version 2 format load configuration files or specify json with is jsonl: truein
version 3 format load configuration files when your Kafka message data is in JSON format, single JSON
record per line. You must define a mapping if you want GPSS to write the data into specific columns in the
target Tanzu Greenplum table.

Sample JSON message data:

{ "cust id": 1313131, "month": 12, "amount paid":1313.13 }
{ "cust id": 3535353, "month": 11, "amount paid":761.35 }
{ "cust _id": 7979797, "month": 11, "amount paid":18.82 }

About Multiple-Line Kafka Messages

A Kafka message may contain a single line or multiple lines.

GPSS supports the following combinations of single and multiple line messages for the key and value data
input components:

Key Value
single-line none
none single-line
single-line single-line
multi-line none
none multi-line

GPSS does not support multiple-line messages for both the key and value.

Registering a Custom Formatter

A custom data formatter for Kafka messages is a user-defined function. If you are using a custom
formatter, you must create the formatter function and register it in each database in which you will use the
function to write Kafka data to Greenplum tables.

Constructing the gpkafka.yaml Configuration File

You configure a data load operation from Kafka to Tanzu Greenplum via a YAML-formatted configuration
file. This configuration file includes parameters that identify the source Kafka data and information about the
Tanzu Greenplum connection and target table, as well as error and commit thresholds for the operation.

97

Tanzu Greenplum Streaming Server

The Tanzu Greenplum streaming server supports three versions of the YAML configuration file: version 1
(deprecated), version 2, and version 3. Versions 2 and 3 of the configuration file format supports all features
of Version 1 of the configuration file, and introduce support for loading both the Kafka message key and
value to Greenplum, as well as loading meta data.

Refer to the gpkafka.yaml reference page for Version 1 configuration file contents and syntax. Refer to the
gpkafka-v2.yaml reference page for Version 2 configuration file format and the configuration parameters that
this version supports. gpkafka-v3.yaml describes the Version 3 format. You may find a quick start guide
and sample YAML configuration files under the $GPHOME/docs/cli help/gpss directory.

Contents of a sample Version 2 YAML configuration file named 1oadcfg2.yaml follows:

DATABASE: ops
USER: gpadmin
PASSWORD: changeme
HOST: mdw-1
PORT: 5432
VERSION: 2
KAFKA:
INPUT:
SOURCE:
BROKERS: kbrokerhost1:9092
TOPIC: customer_expenses2
PARTITIONS: (1, 2...4, 7)
VALUE:
COLUMNS :
- NAME: cl
TYPE: json
FORMAT: avro
AVRO_OPTION:
SCHEMA_REGISTRY_ADDR: http://localhost:8081
KEY:
COLUMNS:
- NAME: key
TYPE: Jjson
FORMAT: avro
AVRO_OPTION:
SCHEMA REGISTRY ADDR: http://localhost:8081
FILTER: (cl->>'month')::int = 11
ERROR_LIMIT: 25
OUTPUT:
SCHEMA: payables
TABLE: expenses2

MAPPING:
- NAME: customer_id
EXPRESSION: (cl->>'cust_id')::int
- NAME: newcust
EXPRESSION: ((cl->>'cust id')::int > 5000000) ::boolean
- NAME: expenses
EXPRESSION: (cl->>'expenses')::decimal
- NAME: tax due
EXPRESSION: ((cl->>'expenses')::decimal * .075)::decimal
METADATA:
SCHEMA: gpkafka_internal

COMMIT:
MINIMAL INTERVAL: 2000

98

Tanzu Greenplum Streaming Server

Tanzu Greenplum Options (Version 2-Focused)

You identify the Tanzu Greenplum connection options via the DATABASE, USER, PASSWORD, HOST, and PORT
parameters.

The vErRsION parameter identifies the version of the GPSS YAML configuration file. The default version is
Version 1. You must specify version 2 or version v3.

KAFKA:INPUT Options

Specify the Kafka brokers and topic of interest using the sourck block. You must create the Kafka topic
prior to loading data. By default, GPSS reads Kafka messages from all partitions. You may specify a
single, a comma-separated list, and/or a range of partition numbers to restrict the partitions from which
GPSS reads messages. The parTTITTONS property is supported only for version 2 and 3 load configuration
file formats.

ﬁ You must configure different jobs that load from the same Kafka topic to the same Tanzu
Greenplum table with non-overlapping PARTITIONS values.

When you provide a vaLUE block, you must specify the coLumns and FOrRMAT parameters. The
VALUE : COLUMNS block includes the name and type of each data element in the Kafka message. The default
source-to-target data mapping behaviour of GPSS is to match a column name as defined in COLUMNS : NAME
with a column name in the target Tanzu Greenplum OUTPUT : TABLE:

¢ You must identify the Kafka data elements in the order in which they appear in the Kafka message.

e You may specify navE: IGNORED to omit a Kafka message value data element from the load
operation.

¢ You must provide the same name for each non-ignored Kafka data element and its associated
Tanzu Greenplum table column.

¢ You must specify an equivalent data type for each non-ignored Kafka data element and its
associated Tanzu Greenplum table column.

The vaLUE: FORMAT keyword identifies the format of the Kafka message value. GPSS supports comma-
delimited text format (csv) and data that is separated by a configurable delimiter (delimited). GPSS also
supports binary (binary), single object or single record per line JSON/JSONB (json or json1), custom
(custom), and Avro (avro) format value data.

When you provide a MET2 block, you must specify a single JSON-type corumns and the FORMAT: json.
Meta data for Kafka includes the following properties:

® topic - text

® partition-int

o offset -bigint

® timestamp -bigint

When you provide a kv block, you must specify the coLumns and FORMAT parameters. The KEY : COLUMNS
block includes the name and type of each element of the Kafka message key, and is subject to the same

99

Tanzu Greenplum Streaming Server

restrictions as identified for vALUE : coLuMNS above. The kKEY: FORMAT keyword identifies the format of the
Kafka message key. GPSS supports avro, binary, csv, custom, delimited, json, and jsonl format key
data.

The FTLTER parameter identifies a filter to apply to the Kafka input messages before the data is loaded into
Tanzu Greenplum. If the filter evaluates to true, GPSS loads the message. The message is dropped if the
filter evaluates to false. The filter string must be a valid SQL conditional expression and may reference
one or more KEY or VALUE column names.

The ErRrROR LIMIT parameter identifies the number of errors or the error percentage threshold after which
GPSS should exit the load operation. The default ERROR LIMIT is zero; the load operation is stopped when
the first error is encountered.

KAFKA:OUTPUT Options

ﬁ You must specify only one of the ouTpuT or ouTpuTS blocks.

You identify the target Tanzu Greenplum schema name and table name via the KAFKa:0UTPUT: SCHEMA and
TABLE parameters. You must pre-create the Tanzu Greenplum table before you attempt to load Kafka data.

The default load mode is to insert Kafka data into the Tanzu Greenplum table. GPSS also supports
updating and merging Kafka message data into a Greenplum table. You specify the load vMopE, the

MATCH COLUMNS and UPDATE COLUMNS, and any UPDATE CONDITIONS that must be met to merge or update
the data. In MERGE MODE, you can also specify orRDER coLuMNS to filter out duplicates and a
DELETE_CONDITION.

You can override the default mapping of the INPUT VALUE: COLUMNS and KEY : COLUMNS by specifying a
MAPPING block in which you identify the association between a specific column in the target Tanzu
Greenplum table and a Kafka message value or key data element. You can also map the META data
columns, and map a Tanzu Greenplum table column to a value expression.

ﬁ When you specify a MappING block, ensure that you provide entries for all Kafka data
elements of interest - GPSS does not automatically match column names when you
provide a MAPPING.

Loading to Multiple Tanzu Greenplum Tables

ﬁ (version 2) You must specify only one of the outruT or cuTpuTs blocks.

If you want to load from a single Kafka topic to multiple Tanzu Greenplum tables, you provide an
OUTPUTS : TABLE (Version 2) or targets:gpdb:tables:table (version 3) block for each table, and specify
the properties that identify the data targeted to each.

About the Merge Load Mode

100

Tanzu Greenplum Streaming Server

MERGE mode is similar to an upseERT operation; GPSS may insert new rows in the database, or may update
an existing database row that satisfies match and update conditions. GPSS deletes rows in MERGE mode
when the data satisfies an optional pELETE conpITION that you specify.

GPSS stages a merge operation in a temporary table, generating the SQL to populate the temp table from
the set of ouTpuT configuration properties that you provide.

GPSS uses the following algorithm for MERGE mode processing:
1. Create a temporary table like the target table.

2. Generate the SQL to insert the source data into the temporary table.

1. Add the MAPPINGS.
2. Addthe FILTER.
3. UsemarcH corLumMns and ORDER COLUMNS to filter out duplicates.

3. Update the target table from rows in the temporary table that satisfy maTcu corLumns,

UPDATE COLUMNS, and UPDATE CONDITION.
4. Insert non-matching rows into the target table.
5. Delete rows in the target table that satisfy maTcH corumns and the DELETE CONDITION.

6. Truncate the temporary table.

Other Options

The KAFKA:METADATA: SCHEMA parameter specifies the name of the Tanzu Greenplum schema in which
GPSS creates external and history tables.

GPSS commits Kafka data to the Tanzu Greenplum table at the row and/or time intervals that you specify
in the KAFKA:COMMIT: MAX ROW and/or MINIMAL INTERVAL parameters. If you do not specify these
properties, GPSS commits data at the default MmInIMAL INTERVAL, 5000ms.

You can configure GPSS to run a task (user-defined function or SQL commands) after GPSS reads a
configurable number of batches from Kafka. Use the kKaFKka: TASK: POST BATCH SQL and BATCH INTERVAL
configuration parameters to specify the task and the batch interval.

Specify a kKaFKa: PROPERTIES block to set Kafka consumer configuration properties. GPSS sends the

property names and values to Kafka when it instantiates a consumer for the load operation.

About KEYs, VALUESs, and FORMATSs

You can specify any data format in the Version 2 configuration file KEy : FORMAT and VALUE : FORMAT
parameters, with some restrictions. The Tanzu Greenplum streaming server supports the following
KEY: FORMAT and VALUE: FORMAT combinations:

KEY:FORMAT VALUE:FORMAT Description
any none (VALUE block GPSS loads only the Kafka message key data, subject to any vappING that
omitted) you specify, to Tanzu Greenplum.

101

KEY:FORMAT

none (kv block
omitted)

csv
any

avro, binary,
delimited, json, jsonl

VALUE:FORMAT

any

any
csv

avro, binary, delimited,
json, jsonl

Tanzu Greenplum Streaming Server

Description

Equivalent to configuration file Version 1. GPSS ignores the Kafka message
key and loads only the Kafka message value data, subject to any MmapPPING
that you specify, to Tanzu Greenplum.

Not permitted.
Not permitted.

Any combination is permitted. GPSS loads both the Kafka message key and
value data, subject to any marp1NG that you specify, to Tanzu Greenplum.

About the JSON Format and Column Type

When you specify FORMAT: json OF FORMAT: jsonl, valid corumn: TYPES for the data include json or

jsonb. You can also specify the new GPSS gp jsonb or gp_json column types.

e gp jsonb is an enhanced JSONB type that adds support for \u escape sequences and unicode.

For example, gp_jsonb can escape \ubD8B and \u0000 as text format, but jsonb treats these

characters as illegal.

e gp jsonis an enhanced JSON type that can tolerate certain illegal unicode sequences. For

example, gp_json automatically escapes incorrect surrogate pairs and processes \u0000 as

\\u0000. Note that unicode escape values cannot be used for code point values above 007F when

the server encoding is not UTFs.

You can use the gp jsonb and gp json data types as follows:

e As the coruMmy: TYPE when the target Tanzu Greenplum table column type is §son or jsonb.

e InawmappING When the target Tanzu Greenplum column is text or varchar. For example:

EXPRESSION:

(J=->>'a') ::text

¢ InawMAPPING wWhen FORMAT: avro and the target Tanzu Greenplum column is §son or jsonb. For

example:

EXPRESSION: j::gp_jsonb

or

EXPRESSION: j::gp_Jjson

¢ InaMAPPING when FORMAT: avro and the target Tanzu Greenplum column is text or varchar. For

example:

EXPRESSION: (j::gp_jsonb->>'a')::text
or

EXPRESSION: (j::gp_json->>'a')::text

102

Tanzu Greenplum Streaming Server

ﬁ The gp_jsonb and gp json data types are defined in an extension named dataflow. You
must CREATE EXTENSION dataflow; in each database in which you choose to use these
data types.

Preserving lll-Formed JSON Escape Sequences

GPSS exposes a configuration parameter that you can use with the gp_jsonb and gp_json types. The
name of this parameter is gpss.json preserve 111 formed prefix. When set, GPSS does not return an
error when it encounters an ill-formed JSON escape sequence with these types, but instead prepends it with
the prefix that you specify.

For example, if gpss.json preserve ill formed prefix is set to the string "##" as follows:

SET gpss.json_preserve_ ill formed prefix = "##";

and GPSS encounters an ill-formed JSON sequence such as the orphaned low surrogate \ude04x, GPSS
writes the data as ##\ude04x instead.

About Transforming and Mapping Kafka Input Data

You can define a MAPPING between the Kafka input data (VALUE: COLUMNS, KEY : COLUMNS, and
META : COLUMNS) and the columns in the target Tanzu Greenplum table. Defining a mapping may be useful
when you have a multi-field input column (such as a JSON-type column), and you want to assign individual
components of the input field to specific columns in the target table.

You might also use a MAPPING to assign a value expression to a target table column. The expression must
be one that you could specify in the seLECT list of a query, and can include a constant value, a column
reference, an operator invocation, a built-in or user-defined function call, and so forth.

If you choose to map more than one input column in an expression, you can can create a user-defined
function to parse and transform the input column and return the columns of interest.

For example, suppose a Kafka producer emits the following JSON messages to a topic:
{ "customer_ id": 1313131, "some_intfield": 12 }

{ "customer_ id": 77, "some_ intfield": 7 }

{ "customer_id": 1234, "some_intfield": 56 }
You could define a user-defined function, udf parse json (), to parse the data as follows:

=> CREATE OR REPLACE FUNCTION udf parse_ json(value Jjson)
RETURNS TABLE (x int, y text)
LANGUAGE plpgsgl AS $$

BEGIN

RETURN query

SELECT ((value->>'customer_id')::int), ((value->>'some_intfield')::text);
END $5;

This function returns the two fields in each JSON record, casting the fields to integer and text, respectively.

An example MappPING for the topic data in a JSON-type KaFKa: INPUT: COLUMNS nhamed jdata follows:

103

Tanzu Greenplum Streaming Server

MAPPING:
cust_id: (jdata->>'customer_id")
field2: ((jdata->>'some intfield') * .075)::decimal

j1, j2: (udf parse json(jdata)) .*
The Tanzu Greenplum table definition for this example scenario is:

=> CREATE TABLE tlmap(cust_id int, field2 decimal(7,2), jl int, j2 text);

About Mapping Avro Bytes Fields to Base64-Encoded Strings

When you specify avRo opPTION:BYTES TO BASE64, GPSS maps Avro bytes fields to base64-encoded
strings. You can provide a MaPPING to decode these strings and write the data to a Greenplum bytea
column.

For example, if the Avro schema is:

"type": "record",
"name": "bytes test",
"fields": [
{"name": "id", "type": "long"},
{"name": "string", "type": "string"},
{"name": "bytes", "type": "bytes"},
{
"name": "inner record",
"type": {
"type": "map",
"values": {
"type": "bytes",
"name": "nested bytes"

And if your load configuration file includes these input property settings:

VALUE:

COLUMNS :

- NAME: cl
TYPE: Jjson

FORMAT: avro

AVRO OPTION:
SCHEMA REGISTRY ADDR: http://localhost:8081
BYTES TO_BASE64: true

You can define a MaPPING to decode the encoded strings as follows:

MAPPING:
- NAME: id
EXPRESSION: (cl->>'id')::int

- NAME: bytesl
EXPRESSION: (decode(cl->>'bytes', 'base64'))

104

Tanzu Greenplum Streaming Server

- NAME: bytes2
EXPRESSION: (decode((cl->>'inner record')::json->>'nested bytes', 'base64'))

This mapping decodes the bytes1 and bytes?2 fields to the Greenplum bytea data type. GPSS would
expect to load these mapped fields to a Greenplum table with the following definition:

CREATE TABLE avbyte(id int, bytesl bytea, bytes2 bytea);

Creating the Greenplum Table

You must pre-create the Greenplum table before you load Kafka data into Tanzu Greenplum. You use the
KAFKA:OUTPUT: SCHEMA and TABLE load configuration file parameters to identify the schema and table
names.

The target Greenplum table definition must include each column that GPSS will load into the table. The
table definition may include additional columns; GPSS ignores these columns, and loads no data into them.

The name and data type that you specify for a column of the target Tanzu Greenplum table must match the
name and data type of the related, non-ignored Kafka message element. If you have defined a column
mapping, the name of the Tanzu Greenplum column must match the target column name that you specified
for the mapping, and the type must match the target column type or expression that you define.

The creaTE TABLE command for the target Tanzu Greenplum table receiving the Kafka topic data defined in
the 1oadcfg2.yaml file presented in the Constructing the gpkafka.yaml Configuration File section follows:

testdb=# CREATE TABLE payables.expenses2(customer id int8, newcust bool,

expenses decimal (9,2), tax due decimal(7,2));

Running the gpkafka load Command

ﬁ gpkafka load is a wrapper around the Tanzu Greenplum streaming server (GPSS) gpss
and gpsscli utilities. Starting in Tanzu Greenplum streaming server version 1.3.2,
gpkafka load no longer launches a gpss server instance, but rather calls the backend
server code directly.

When you run gpkafka load, the command submits, starts, and stops a GPSS job on your behalf.
VMware recommends that you migrate to using the GPSS utilities directly.

You run the gpkafka load command to load Kafka data to Greenplum. When you run the command, you
provide the name of the configuration file that defines the parameters of the load operation. For example:

$ gpkafka load loadcfg2.yaml

The default mode of operation for gpkafka load is to read all pending messages and then to wait for, and
then consume, new Kafka messages. When running in this mode, gpkafka load waits indefinitely; you can
interrupt and exit the command with Control-c.

To run the command in batch mode, you provide the --quit-at-eof option. In this mode, gpkafka load
exits when there are no new messages in the Kafka stream.

105

Tanzu Greenplum Streaming Server

gpkafka load resumes a subsequent data load operation specifying the same Kafka topic and target
Tanzu Greenplum table names from the last recorded offset.

Refer to the gpkafka load reference page for additional information about this command.

ﬁ GPSS cannot detect the addition of a new Kafka partition while a load operation is in
progress. You must stop, and then restart the load operation to read Kafka messages
published to the new partition.

Configuring the gpfdist Server Instance

The gpkafka load command uses the gpfdist or gpfdists protocol to load data into Greenplum. You can
configure the protocol used for the load request by providing the --config gpfdistconfig.json option to
the command, where gpfdistconfig.json identifies a GPSS configuration file that specifies gpfdist
configuration in a cpfdist protocol block. Refer to Configuring the Tanzu Greenplum Streaming Server in
the Tanzu Greenplum streaming server documentation for detailed information about the file format and
properties supported.

ﬁ gpkafka load reads the configuration specified in the gpfdist protocol block of the
gpfdistconfig.json file; it ignores the GPSS configuration specified in the
ListenAddress block of the file.

Or, you may choose to provide gpfdist host or port configuration settings on the gpkafka load command
line by specifying the --gpfdist-host hostaddr Or -—gpfdist-port portnum options to the command.
Any options that you specify on the command line override settings provided in the gpfdistconfig.json
file.

About Kafka Offsets, Message Retention, and Loading

Kafka maintains a partitioned log for each topic, assigning each record/message within a partition a unique
sequential id number. This id is referred to as an offset. Kafka retains, for each gpkafka load invocation
specifying the same Kafka topic and Tanzu Greenplum table names, the last offset within the log consumed
by the load operation. The Tanzu Greenplum streaming server also records this offset value. Refer to
Understanding Kafka Message Offset Management for more detailed information about how GPSS
manages message offsets.

Kafka persists a message for a configurable retention time period and/or log size, after which it purges
messages from the log. Kafka topics or messages can also be purged on demand. This may result in an
offset mismatch between Kafka and the Tanzu Greenplum streaming server.

gpkafka load returns an error if its recorded offset for the Kafka topic and Tanzu Greenplum table
combination is behind that of the current earliest Kafka message offset for the topic, or when the earliest
and latest offsets do not match.

When you receive one of these messages, you can choose to:

106

Tanzu Greenplum Streaming Server

¢ Resume the load operation from the earliest available message published to the topic by specifying
the --force-reset-earliest option to gpkafka load:

$ gpkafka load --force-reset-earliest loadcfg2.yaml

¢ Load only new messages published to the Kafka topic, by specifying the --force-reset-latest
option with the command:

$ gpkafka load --force-reset-latest loadcfg2.yaml

¢ Load messages published since a specific timestamp (milliseconds since epoch), by specifying the
-—force-reset-timestamp Option to gpkafka load. To determine the create time epoch timestamp
for a Kafka message, run the Kafka console consumer on the topic specifying the --property
print.timestamp=true option, and review the output. You can also use a converter such as
EpocConverter to convert a human-readable date to epoch time.

$ gpkafka load --force-reset-timestamp 1571066212000 loadcfg2.yaml

ﬁ Specifying the --force-reset-<xxx> options when loading data may result in missing or
duplicate messages. Use of these options outside of the offset mismatch scenario is
discouraged.

Alternatively, you can provide the FALLBACK OPTION (version 2) or fallback option (version 3) property in
the load configuration file to instruct GPSS to automatically read from the specified offset when it detects a
mismatch.

Checking the Progress of a Load Operation

Starting in version 1.4.1, GPSS keeps track of the progress of each Kafka load job in a separate CSV-
format log file. The progress log file for a specific job is named
progress *jobname* *jobid* *date*.log, and resides in the following log directory

¢ If you are loading Kafka data to Greenplum with the gpkafka load command, GPSS writes the
progress log file to the directory that you specified with the -1 | --1og-dir option to the
command, or to the sHOME/gpAdminLogs directory.

¢ If you are loading Kafka data to Greenplum with the gpssc1i commands, GPSS writes the
progress log file to the directory that you specified with the -1 | --1og-dir option when you
started the GPSS server instance, or to the $HOME/gpAdminLogs directory.

A progress log file includes information and statistics about the load time, data size, and speed. It also
includes the number of rows written to the Greenplum table, the number of rows rejected by Greenplum, and
the total number of rows operated on by GPSS (inserted rows plus rejected rows).

A progress log file includes the following header row:

timestamp,pid,batch id,start time,end time,total byte,speed,total read count,inserted

rows,rejected rows,total rows

107

https://www.epochconverter.com/

Tanzu Greenplum Streaming Server

Example Kafka progress log message:

20220704 10:17:00.52827,101417,1,2022-07-04 17:16:33.421+00,2022-07-04 17:17:00.497+0
0,79712,2.88KB,997,991,6,997

When GPSS reads Kafka data in jsonl, delimited, or csv formats, a Kafka message may contain
multiple rows. For these formats, the progress log total read count identifies the Kafka message
number, while total rows identifies the total number of inserted and rejected rows.

Understanding Kafka Message Offset Management

As a Kafka consumer, GPSS must manage the progress of each load operation.

Legacy Consumer

The default behaviour of GPSS is that of a legacy Kafka consumer; it always stores the message offset for
each load job in a history table in VMware Tanzu Greenplum.

High-Level Consumer

GPSS can also act as a high-level consumer when you specify a consumer group using the group. id
Kafka client configuration property. High-level consumers take advantage of Kafka broker-based offset
management. When the enable.auto.commit Kafka client property is also enabled (the default), GPSS
automatically commits offsets to the Kafka broker by group. This allows you to monitor the Kafka
consumed offset directly from the broker.

Recall that you specify Kafka client properties in the PROPERTIES (version 2) and rdkafka prop (version 3)

load configuration file block. For example:

PROPERTIES:
group.id: gpss

Or,

rdkafka prop:
group.id: gpss

enable.auto.commit: false

When acting as a high-level consumer, GPSS uses the cONSTISTENCY (version 2) or consistency (version
3) load configuration file property and client enable.auto.commit settings to govern how it manages
offsets. The CONSISTENCY/consistency setting identifies how, when (before commit, after commit, or
never), and where (history table, broker, both, nowhere) GPSS writes the offset.

GPSS supports the following consIsTENCY settings:

CONSISTENCY: { strong | at-least | at-most| none }

Summary

The following table summarizes the offset commit behaviour of GPSS:

108

Consistency
Value

strong [or empty]

at-least

at-most

none

Legacy Consumer

GPSS stores offsets in a history
table.

GPSS stores offsets in a history
table.

GPSS stores offsets in a history
table.

GPSS stores offsets in a history
table.

Tanzu Greenplum Streaming Server

High-Level Consumer

GPSS stores offsets in both a history table and the Kafka broker.

GPSS stores offsets in the Kafka broker before commit ().

GPSS stores offsets in the broker after commit ().

When enable.auto.commit=true, GPSS stores offsets in the
broker automatically.

When enable.auto.commit=false, GPSS does not store offsets
anywhere.

Accessing an SSL-Secured Schema Registry

You must specify certain configuration properties when your Kafka data load operation accesses a secured
Confluent Schema Registry service. GPSS exposes these properties in the avro orpTION: block of the

version 2 Kafka load configuration file, and the avro: block of the version 3 (beta) Kafka load configuration

file.

About the Configuration Properties

You can specify the following version 2 configuration properties to identify the certificates and keys required
to access an SSL-secured schema registry service:

ﬁ The version 3 configuration property names are lowercase.

¢ SCHEMA_CA_ON_GPDB - The file system path to the CA certificate that GPSS uses to verify the

peer.

¢ SCHEMA_CERT_ON_GPDB - The file system path to the client certificate that GPSS uses to

connect to the HTTPS schema registry.

¢ SCHEMA_KEY_ON_GPDB - The file system path to the private key file that GPSS uses to

connect to the HTTPS schema registry.

¢ SCHEMA_MIN_TLS_VERSION - The minimum transport layer security (TLS) version that GPSS
requests on the connection to the registry. The default minimum TLS version is 1.0; you can

specify 1.0, 1.1, 1.2, 0r 1.3.

The schema registry's ss1.client.auth property controls client authentication requirements for the

service:

¢ When ssl.client.auth=false for the registry, you need only specify the scHEMA cA ON GPDE.

e When ssl.client.auth=true for the registry, you must also specify sciEMA CERT ON GPDB and

SCHEMA KEY ON GPDB in addition to the scHEMA CA ON GPDB.

109

Tanzu Greenplum Streaming Server

All certificate and key files must reside in the specified location on all VMware Tanzu Greenplum segment
hosts.

Be sure to also specify the scaEMa MIN TLS VERSTON if the default value of 1.0 is not sufficient for your
requirements.

Additional Considerations
Take the following into consideration when you use GPSS to access an SSL-secured Kafka schema
registry:

e Even though you can specify multiple registry addresses in SCHEMA REGISTRY ADDRESS, GPSS
supports specifying only a single set of SSL certificate and key properties. GPSS uses the
specified (same) CA, certificate, and key regardless of the registry accessed.

¢ The file system paths that you specify for the CA, certificate, and key are limited to 64 characters
each.

Examples
The following examples illustrate how to load different formats of data into VMware Tanzu Greenplum using
the gpkafka and gpsscli utilities:

¢ Loading CSV Data from Kafka

¢ Loading JSON Data from Kafka (Simple)

¢ Loading JSON Data from Kafka (with Mapping)

¢ Loading Avro Data from Kafka

¢ Loading JSON Data from Kafka Using gpsscli

¢ Merging Data from Kafka into Greenplum Using gpsscli

Loading CSV Data from Kafka

In this example, you load data from a Kafka topic named topic for gpkafka into a VMware Tanzu
Greenplum table named data from kafka. You perform the load as the Greenplum role gpadmin. The table
data from kafka resides in the public schema in a Tanzu Greenplum database named testdb.

A producer of the Kafka topic for gpkafka topic emits customer expense messages in CSV format that
include the customer identifier (integer), the month (integer), and an expense amount (decimal). For
example, a message for a customer with identifier 123 who spent $456.78 in the month of September
follows:

"123","09","456.78"

You will run a Kafka console producer to emit customer expense messages, and use the VMware Tanzu
Greenplum streaming server gpkafka load command to transform and load the data into the
data from kafka table and verify the load operation.

Prerequisites

10

Tanzu Greenplum Streaming Server

Before you start this procedure, ensure that you:
¢ Have administrative access to running Kafka and Tanzu Greenplum clusters.
¢ Have configured connectivity as described in the loading Prerequisites.
¢ |dentify and note the ZooKeeper hostname and port.
¢ |dentify and note the hostname and port of the Kafka broker(s).
¢ |dentify and note the hostname and port of the Tanzu Greenplum coordinator node.

This procedure assumes that you have installed the Apache Kafka distribution. If you are using a different
Kafka distribution, you may need to adjust certain commands in the procedure.

Procedure

1. Log in to a host in your Kafka cluster. For example:

$ ssh kafkauser@kafkahost
kafkahost$

2. Create a Kafka topic named topic for gpkafka. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-topics.sh --create \
--zookeeper localhost:2181 --replication-factor 1 --partitions 1 \

--topic topic_for_ gpkafka
3. Open a file named sample data.csv in the editor of your choice. For example:

kafkahost$ vi sample data.csv
4. Copy/paste the following text to add CSV-format data into the file, and then save and exit:

"1313131","12","1313.13"
"3535353","11","761.35"
"7979797","10","4489.00"
"7979797","11","18.72"
"3535353","10","6001.94"
"7979797","12","173.18"
"1313131","10","492.83"
"3535353","12","81.12"
"1313131","11","368.27"

5. Stream the contents of the sample data.csv file to a Kafka console producer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-producer.sh \
--broker-list localhost:9092 \
--topic topic_ for gpkafka < sample data.csv

6. Verify that the Kafka console producer published the messages to the topic by running a Kafka
console consumer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 --topic topic_for gpkafka \

m

https://kafka.apache.org/

Tanzu Greenplum Streaming Server

--from-beginning

Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@gpcoord
gpcoord$. /usr/local/greenplum-db/greenplum_path.sh

Construct the load configuration file. Open a file named firstload cfg.yaml in the editor of your
choice. For example:

gpcoord$ vi firstload cfg.yaml

Fill in the load configuration parameter values based on your environment. This example assumes:
o Your Tanzu Greenplum coordinator hostname is gpcoord.
o The Tanzu Greenplum server is running on the default port.
o Your Kafka broker host and port is 1ocalhost:9092.

o You want to write the Kafka data to a Tanzu Greenplum table named data from kafka
located in the public schema of a database named testdb.

o You want to write the customer identifier and expenses data to Greenplum. You also want
to calculate and write the tax due (7.25%) on the expense data. The firstload cfg.yaml
file would include the following contents:

DATABASE: testdb
USER: gpadmin
HOST: gpcoord
PORT: 5432

KAFKA:
INPUT:

SOURCE:
BROKERS: localhost:9092
TOPIC: topic_ for gpkafka

COLUMNS:
- NAME: cust_id

TYPE: int

- NAME: _ IGNORED_ _

TYPE: int
- NAME: expenses
TYPE: decimal (9,2)
FORMAT: csv
ERROR_LIMIT: 125
OUTPUT:
TABLE: data_from_kafka
MAPPING:
- NAME: customer id
EXPRESSION: cust_ id
- NAME: expenses
EXPRESSION: expenses
- NAME: tax due
EXPRESSION: expenses * .0725
COMMIT:
MINIMAL INTERVAL: 2000

12

10.

1.

12.

13.

14.

15.

16.

17.

18.

Tanzu Greenplum Streaming Server

Create the target Tanzu Greenplum table named data from kafka. For example:

gpcoord$ psgl -d testdb

testdb=# CREATE TABLE data from kafka(customer id int8, expenses decimal(9,2),
tax_due decimal(7,2));

Exit the psql subsystem:
testdb=# \qg

Run the gpkafka load command to batch load the CSV data published to the topic for gpkafka
topic into the Greenplum table. For example:

gpcoord$ gpkafka load --quit-at-eof ./firstload cfg.yaml

The command exits after it reads all data published to the topic.

Examine the command output, looking for messages identifying the number of rows
inserted/rejected. For example:

-[INFO]:- ... Inserted 9 rows
-[INFO]:- ... Rejected 0 rows

Run the gpkafka load command again, this time in streaming mode. For example:
gpcoord$ gpkafka load ./firstload cfg.yaml

The command waits for a producer to publish new messages to the topic.

Navigate back to your Kafka host terminal window. Stream the contents of the sample data.csv
file to the Kafka console producer once more:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-producer.sh \
--broker-list localhost:9092 \
--topic topic_for gpkafka < sample data.csv

Notice the activity in your Tanzu Greenplum coordinator terminal window. gpkafka load consumes
the new round of messages and waits.

Interrupt and exit the waiting gpkafka 1oad command by entering Control-c in the Tanzu
Greenplum coordinator host terminal window.

View the contents of the Tanzu Greenplum target table data from kafka:

gpcoord$ psgl -d testdb

testdb=# SELECT * FROM data_from_kafka WHERE customer_id='1313131'
ORDER BY expenses;

customer id | expenses | tax_due

_____________ o p
1313131 | 368.27 | 26.70
1313131 | 368.27 | 26.70

1313131 | 492.83 | 35.73

13

Tanzu Greenplum Streaming Server

1313131 | 492.83 | 35.73

1313131 | 1313.13 | 95.20

1313131 | 1313.13 | 95.20
(6 rows)

The table contains two entries for each expense because the producer published the
sample data.csv file twice.

Loading JSON Data from Kafka (Simple)

In this example, you load JSON format data from a Kafka topic named topic json into a single column
VMware Tanzu Greenplum table named single json column. You perform the load as the Greenplum role
gpadmin. The table single json column resides in the public schema in a Tanzu Greenplum named
testdb.

A producer of the Kafka topic json topic emits customer expense messages in JSON format that include
the customer identifier (integer), the month (integer), and an expense amount (decimal). For example, a
message for a customer with identifier 123 who spent $456.78 in the month of September follows:

{ "cust_id": 123, "month": 9, "amount paid":456.78 }

You will run a Kafka console producer to emit JSON-format customer expense messages, and use the
VMware Tanzu Greenplum streaming server gpkafka load command to load each Kafka message into a
row in the single json column table.

Prerequisites

Before you start this procedure, ensure that you:
¢ Have administrative access to running Kafka and Tanzu Greenplum clusters.
* Have configured connectivity as described in the loading Prerequisites.
¢ ldentify and note the ZooKeeper hostname and port.
¢ |dentify and note the hostname and port of the Kafka broker(s).
¢ Identify and note the hostname and port of the Tanzu Greenplum coordinator node.

This procedure assumes that you have installed the Apache Kafka distribution. If you are using a different
Kafka distribution, you may need to adjust certain commands in the procedure.

Procedure
1. Login to a host in your Kafka cluster. For example:

$ ssh kafkauser@kafkahost
kafkahost$

2. Create a Kafka topic named topic json. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-topics.sh --create \

--zookeeper localhost:2181 --replication-factor 1 --partitions 1 \

n4

https://kafka.apache.org/

--topic topic_json

Tanzu Greenplum Streaming Server

3. Open a file named sample data.json in the editor of your choice. For example:

kafkahost$ vi sample data.json

4. Copy/paste the following text to add JSON-format data into the file, and then save and exit:

{ "cust_id": 1313131, "month": 12, "expenses": 1313.13 }
{ "cust_id": 3535353, "month": 11, "expenses": 761.35 }
{ "cust_id": 7979797, "month": 10, "expenses": 4489.00 }
{ "cust_id": 7979797, "month": 11, "expenses": 18.72 }

{ "cust_id": 3535353, "month": 10, "expenses": 6001.94 }
{ "cust_id": 7979797, "month": 12, "expenses": 173.18 }
{ "cust_id": 1313131, "month": 10, "expenses": 492.83 }
{ "cust_id": 3535353, "month": 12, "expenses": 81.12 }

{ "cust_id": 1313131, "month": 11, "expenses": 368.27 }

Stream the contents of the sample data.json file to a Kafka console producer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-producer.sh \
--broker-list localhost:9092 \

--topic topic_json < sample data.json

Verify that the Kafka console producer published the messages to the topic by running a Kafka
console consumer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 --topic topic_ json \

--from-beginning

Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@Rgpcoord

gpcoord$ /usr/local/greenplum-db/greenplum _path.sh

Construct the load configuration file. Open a file named simple jsonload cfg.yaml in the editor
of your choice. For example:

gpcoord$ vi simple jsonload cfg.yaml

Fill in the load configuration parameter values based on your environment. This example assumes:
o Your Tanzu Greenplum coordinator hostname is gpcoord.
o The Tanzu Greenplum server is running on the default port.
o Your Kafka broker host and port is 1ocalhost:9092.

o You want to write the Kafka data to a Tanzu Greenplum table named single json column
located in the public schema of a database named testdb.

o You want to write the data to Greenplum as a single json type column. The
simple jsonload cfg.yaml file would include the following contents:

15

10.

1.

12.

13.

14.

DATABASE: tes

USER: gpadmin

HOST: gpcoord
PORT: 5432
KAFKA:

INPUT:
SOURCE :
BROKE
TOPIC
FORMAT :

tdb

RS: localh
: topic Js

json

ERROR_LIMIT: 10

OUTPUT:

ost:9092

on

TABLE: single json_column

COMMIT :
MINIMAL_

INTERVAL:

1000

Tanzu Greenplum Streaming Server

Create the target Tanzu Greenplum table named single json column. For example:

gpcoord$ psqgl

-d testdb

testdb=# CREATE TABLE single_json_column(value json);

Exit the psql subsystem:

testdb=# \qg

Run the gpkafka load command to batch load the JSON data published to the topic json topic

into the Greenplum table. For example:

gpcoord$ gpkafka load --quit-at-eof

./simple jsonload cfg.yaml

The command exits after it reads all data published to the topic.

Examine the command output, looking for messages that identify the number of rows
inserted/rejected. For example:

-[INFO] :-
-[INFO] : -

Inserted 9 rows

Rejected 0 rows

View the contents of the Tanzu Greenplum target table single json column:

gpcoord$ psqgl

-d testdb

testdb=# SELECT * FROM

"cust_id":
"cust_id":
"cust_id":
"cust_id":
"cust id":
"cust id":
"cust id":
"cust id":

7979797,
7979797,
3535353,
3535353,
1313131,
3535353,
7979797,
1313131,

single json_column;

value

"month":
"month":
"month":
"month":
"month":
"month":
"month":

"month":

10,

"expenses":
"expenses":
"expenses":
"expenses":
"expenses":
"expenses":
"expenses":

"expenses":

4489.00
18.72 }
81.12 }
761.35
1313.13
6001.94
173.18
492.83

}

}
}

}

}
}

116

Tanzu Greenplum Streaming Server

{ "cust_id": 1313131, "month": 11, "expenses": 368.27 }
(9 rows)

15. Use json operators to view the expenses associated with a specific customer:

testdb=# SELECT (value->>'expenses')::decimal AS expenses FROM single_ json_col
umn
WHERE (value->>'cust_id')::int = 1313131;

expenses

1313.13
492.83
368.27

(3 rows)

Loading JSON Data from Kafka (with Mapping)

In this example, you load JSON format data from a Kafka topic named topic json gpkafka into a
VMware Tanzu Greenplum table named json from kafka. You perform the load as the Greenplum role
gpadmin. The table json from kafka resides in the public schema in a Tanzu Greenplum named testdb.

A producer of the Kafka topic json gpkafka topic emits customer expense messages in JSON format
that include the customer identifier (integer), the month (integer), and an expense amount (decimal). For
example, a message for a customer with identifier 123 who spent $456.78 in the month of September
follows:

{ "cust id": 123, "month": 9, "amount paid":456.78 }

You will run a Kafka console producer to emit JSON-format customer expense messages, and use the
VMware Tanzu Greenplum streaming server gpkafka load command to transform and load the data into
the yson from kafka table.

Prerequisites

Before you start this procedure, ensure that you:
¢ Have administrative access to running Kafka and Tanzu Greenplum clusters.
* Have configured connectivity as described in the loading Prerequisites.
¢ ldentify and note the ZooKeeper hostname and port.
e Identify and note the hostname and port of the Kafka broker(s).
¢ |dentify and note the hostname and port of the Tanzu Greenplum coordinator node.

This procedure assumes that you have installed the Apache Kafka distribution. If you are using a different
Kafka distribution, you may need to adjust certain commands in the procedure.

Procedure

1. Login to a host in your Kafka cluster. For example:

17

https://kafka.apache.org/

$ ssh kafkauser@kafkahost

kafkahost$

Tanzu Greenplum Streaming Server

2. Create a Kafka topic named topic json gpkafka. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-topics.sh --create \

--zookeeper localhost:2181
--topic topic_json gpkafka

--replication-factor 1

--partitions 1 \

3. Open a file named sample data.json in the editor of your choice. For example:

kafkahost$ vi sample data.json

4. Copy/paste the following text to add JSON-format data into the file, and then save and exit:

{ "cust_id": 1313131, "month": 12, "expenses": 1313.13 }
{ "cust_id": 3535353, "month": 11, "expenses": 761.35 }
{ "cust_id": 7979797, "month": 10, "expenses": 4489.00 }
{ "cust_id": 7979797, "month": 11, "expenses": 18.72 }

{ "cust_id": 3535353, "month": 10, "expenses": 6001.94 }
{ "cust_id": 7979797, "month": 12, "expenses": 173.18 }
{ "cust_id": 1313131, "month": 10, "expenses": 492.83 }
{ "cust_id": 3535353, "month": 12, "expenses": 81.12 }

{ "cust_id": 1313131, "month": 11, "expenses": 368.27 }

Stream the contents of the sample data.json file to a Kafka console producer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-producer.sh \
--broker-list localhost:9092 \

--topic topic_json_gpkafka < sample data.json

Verify that the Kafka console producer published the messages to the topic by running a Kafka
console consumer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 --topic topic_json gpkafka \

--from-beginning

Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@Rgpcoord

gpcoord$ /usr/local/greenplum-db/greenplum_path.sh

Construct the load configuration file. Open a file named jsonload cfg.yaml in the editor of your
choice. For example:

gpcoord$ vi jsonload cfg.yaml

Fill in the load configuration parameter values based on your environment. This example assumes:

o Your Tanzu Greenplum coordinator hostname is gpcoord.

o The Tanzu Greenplum server is running on the default port.

Tanzu Greenplum Streaming Server

o Your Kafka broker host and port is 1ocalhost:9092.

o You want to write the Kafka data to a Tanzu Greenplum table named json from kafka
located in the public schema of a database named testdb.

o You want to write the customer identifier and expenses data to Greenplum. The
jsonload cfg.yaml file would include the following contents:

DATABASE: testdb
USER: gpadmin
HOST: gpcoord
PORT: 5432
KAFKA:
INPUT:
SOURCE :
BROKERS: localhost:9092
TOPIC: topic_ json_gpkafka
COLUMNS:
- NAME: jdata
TYPE: Jjson
FORMAT: json
ERROR_LIMIT: 10

OUTPUT:
TABLE: json_ from_kafka
MAPPING:
- NAME: customer_ id
EXPRESSION: (jdata->>'cust_id')::int
- NAME: month
EXPRESSION: (jdata->>'month')::int

- NAME: amount paid
EXPRESSION: (jdata->>'expenses')::decimal
COMMIT:
MINIMAL INTERVAL: 2000

10. Create the target Tanzu Greenplum table named json from kafka. For example:

gpcoord$ psgl -d testdb

testdb=# CREATE TABLE json_ from kafka(customer id int8, month int4, amount pai
d decimal(9,2));

11. Exit the psql subsystem:

testdb=# \g

12. Run the gpkafka load command to batch load the JSON data published to the
topic json gpkafka topic into the Greenplum table. For example:

gpcoord$ gpkafka load --quit-at-eof ./jsonload cfg.yaml

The command exits after it reads all data published to the topic.

13. Examine the command output, looking for messages that identify the number of rows
inserted/rejected. For example:

119

Tanzu Greenplum Streaming Server
. —-[INFO]:- ... Inserted 9 rows
. -[INFO]:- ... Rejected 0 rows
14. View the contents of the Tanzu Greenplum target table son from kafka:

gpcoord$ psgl -d testdb

testdb=# SELECT * FROM json_from_kafka WHERE customer_ id='1313131'
ORDER BY amount paid;

customer_id | month | amount_paid
_____________ e
1313131 | 11 | 368.27
1313131 | 10 | 492.83
1313131 | 12 | 1318, i3
(3 rows)

Loading Avro Data from Kafka

In this example, you load Avro-format key and value data as JSON from a Kafka topic named

topic avrokv into a VMware Tanzu Greenplum table named avrokv from kafka. You perform the load as
the Greenplum role gpadmin. The table avrokv from kafka resides in the public schema in a Tanzu
Greenplum named testdb.

A producer of the Kafka topic avrokv topic emits customer expense messages in JSON format that
include the customer identifier (integer), the year (integer), and one or more expense amounts (decimal). For
example, a message with key 1 for a customer with identifier 123 who spent $456.78 and $67.89 in the year
1997 follows:

1 { "cust_id": 123, "year": 1997, "expenses":[456.78, 67.89] }

You will use the Confluent Schema Registry and run a Kafka Avro console producer to emit keys and Avro
JSON-format customer expense messages, and use the VMware Tanzu Greenplum streaming server
gpkafka load command to load the data into the avrokv from kafka table.

Prerequisites

Before you start this procedure, ensure that you:
¢ Have administrative access to running Confluent Kafka and Tanzu Greenplum clusters
* Have configured connectivity as described in the loading Prerequisites.
¢ Identify and note the ZooKeeper hostname and port.
¢ |dentify and note the address of the Confluent Schema Registry server(s).
¢ Identify and note the hostname and port of the Kafka broker(s).
¢ Identify and note the hostname and port of the Tanzu Greenplum coordinator node.

This procedure assumes that you have installed the Confluent Kafka distribution.

Procedure

120

https://www.confluent.io/download/

Tanzu Greenplum Streaming Server

Login to a host in your Kafka cluster. For example:

$ ssh kafkauser@kafkahost
kafkahost$

Create a Kafka topic named topic json gpkafka. For example:

kafkahost$ $SKAFKA INSTALL DIR/bin/kafka-topics --create \
--zookeeper localhost:2181 --replication-factor 1 --partitions 1 \

--topic topic_avrokv

Start a Kafka Avro console producer. You will manually input message data to this producer. For
example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-avro-console-producer \
--broker-1list localhost:9092 \
--topic topic_avrokv \

--property parse.key=true --property key.schema='{"type" : "int", "name"
"id")t o\

--property value.schema='{ "type" : "record", "name" : "example schema", "n
amespace" : "com.example", "fields" : [{ "name" : "cust_ id", "type" : "int",
"doc" : "Id of the customer account" }, { "name" : "year", "type" : "int", "do
c" : "year of expense" }, { "name" : "expenses", "type" : {"type": "array", "it
ems": "float"}, "doc" : "Expenses for the year" }], "doc:" : "A basic schema f

or storing messages" }'

The producer waits for messages.

Input the following messages to the Avro console producer.

n You must enter a tab between the key and value. Replace Tar with a tab.

1 TAB {"cust id":1313131, "year":2012, "expenses":[1313.13, 2424.24]}
2 TAB {"cust id":3535353, "year":2011, "expenses":[761.35, 92.18, 14.41]}
3 TAB {"cust id":7979797, "year":2011, "expenses":[4489.00]}

Verify that the Kafka Avro console producer published the messages to the topic by running a
Kafka Avro console consumer. Specify the print. key property to have the consumer display the
Kafka key. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-avro-console-consumer \
--bootstrap-server localhost:9092 --topic topic_avrokv \

--from-beginning --property print.key=true

Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@gpcoord
gpcoord$. /usr/local/greenplum-db/greenplum path.sh

Construct the load configuration file. Open a file named avrokvload cfg.yaml in the editor of your
choice. For example:

121

Tanzu Greenplum Streaming Server

gpcoord$ vi avrokvload cfg.yaml

8. Fillin the load configuration parameter values based on your environment. This example assumes:

o

Your Tanzu Greenplum coordinator hostname is gpcoord.
The Tanzu Greenplum server is running on the default port.
Your Kafka broker host and port is 1ocalhost:9092.

Your Confluent Schema Registry address is http://localhost:8081. The
avrokvload cfg.yaml file might include the following contents:

DATABASE: testdb

USER: gpadmin
HOST: gpcoord
PORT: 5432
VERSION: 2
KAFKA:
INPUT:
SOURCE:
BROKERS: localhost:9092
TOPIC: topic_avrokv
VALUE:
COLUMNS:
- NAME: cl
TYPE: Jjson
FORMAT: avro
AVRO_ OPTION:
SCHEMA REGISTRY ADDR: http://localhost:8081
KEY:
COLUMNS :
- NAME: id

TYPE: json
FORMAT: avro
AVRO_OPTION:
SCHEMA REGISTRY ADDR: http://localhost:8081

ERROR_LIMIT: O

OUTPUT:
TABLE: avrokv_from_ kafka
MAPPING:
- NAME: id

EXPRESSION: id
- NAME: customer_ id

EXPRESSION: (cl->>'cust_id')::int
- NAME: year
EXPRESSION: (cl->>'year')::int
- NAME: expenses
EXPRESSION: array(select json array elements(cl->'expenses')::text::f
loat)
COMMIT :

MINIMAL INTERVAL: 2000

The mapping in this configuration assigns each message value field to a separate column and

ignores t

he message key.

9. Create the target Tanzu Greenplum table named avrokv from kafka. For example:

122

gpcoord$ psgl -d testdb

testdb=# CREATE TABLE avrokv_from_ kafka(id json,

penses decimal (9,2) []

10. Exit the psql subsystem:

testdb=# \g

Tanzu Greenplum Streaming Server

customer id int, year int, ex

11. Run the gpkafka load command to batch load the JSON data published to the

topic json gpkafka topic into the Greenplum table. For example:

gpcoord$ gpkafka load --quit-at-eof

The command exits after it reads all data published to the topic.

./avrokvload cfg.yaml

12. Examine the command output, looking for messages that identify the number of rows

inserted/rejected. For example:

-[INFO] : -
-[INFO] : -

Inserted 3 rows

Rejected 0 rows

13. View the contents of the Tanzu Greenplum target table avrokv from kafka:

gpcoord$ psgl -d testdb

testdb=# SELECT * FROM avrokv_from_kafka ORDER BY customer_id;

B et to—m Fmmm
{1313.13,2424.24}
{761.35,92.18,14.41}

id | customer id
1 | 1313131
2 3535353
3 7979797
(3 rows)

Loading JSON Data from Kafka Using gpsscli

ﬁ This example uses the Tanzu Greenplum Tanzu client utility, gpssc1i, rather than the
gpkafka utility, to load JSON-format data from Kafka into VMware Tanzu Greenplum.

In this example, you load JSON format data from a Kafka topic named topic json gpkafka into a Tanzu
Greenplum table named json from kafka. You perform the load as the Greenplum role gpadmin. The table
json from kafka resides in the public schema in a Tanzu Greenplum database named testdb.

A producer of the Kafka topic json gpkafka topic emits customer expense messages in JSON format
that include the customer identifier (integer), the month (integer), and an expense amount (decimal). For
example, a message for a customer with identifier 123 who spent $456.78 in the month of September

follows:

{ "cust_id": 123, "month":

"amount paid":456.78

123

Tanzu Greenplum Streaming Server

You will run a Kafka console producer to emit JSON-format customer expense messages, start a Tanzu
Greenplum Tanzu instance, and use the GPSS gpsscli subcommands to load the data into the

json_from_kafkataue.

Prerequisites

Before you start this procedure, ensure that you:

¢ Have administrative access to running Kafka and Tanzu Greenplum clusters.

¢ Have configured connectivity as described in both the Tanzu Greenplum Tanzu Prerequisites
section and the Kafka Prerequisites.

¢ ldentify and note the ZooKeeper hostname and port.

¢ |dentify and note the hostname and port of the Kafka broker(s).

¢ Identify and note the hostname and port of the Tanzu Greenplum coordinator node.

¢ Register the GPSS extension.

This procedure assumes that you have installed the Apache Kafka distribution. If you are using a different
Kafka distribution, you may need to adjust certain commands in the procedure.

Procedure

1. Login to a host in your Kafka cluster. For example:

$ ssh kafkauser@kafkahost
kafkahost$

2. Create a Kafka topic named topic json gpkafka. For example:

kafkahost$ $KAFKA_ INSTALL_DIR/bin/kafka-topics.sh --create \

--zookeeper localhost:2181 --replication-factor 1 --partitions 1 \

--topic topic_json_gpkafka
3. Open a file named sample data.json in the editor of your choice. For example:
kafkahost$ vi sample data.json

4. Copy/paste the following text to add JSON-format data into the file, and then save and exit:

{ "cust_id": 1313131, "month": 12, "expenses": 1313.13 }
{ "cust id": 3535353, "month": 11, "expenses": 761.35 }
{ "cust _id": 7979797, "month": 10, "expenses": 4489.00 }
{ "cust id": 7979797, "month": 11, "expenses": 18.72 }

{ "cust id": 3535353, "month": 10, "expenses": 6001.94 }
{ "cust_id": 7979797, "month": 12, "expenses": 173.18 }
{ "cust id": 1313131, "month": 10, "expenses": 492.83 }
{ "cust id": 3535353, "month": 12, "expenses": 81.12 }

{ "cust _id": 1313131, "month": 11, "expenses": 368.27 }

5. Stream the contents of the sample data.7son file to a Kafka console producer. For example:

124

https://kafka.apache.org/

10.

1.

12.

Tanzu Greenplum Streaming Server

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-producer.sh \
--broker-list localhost:9092 \
--topic topic_json gpkafka < sample data.json

Verify that the Kafka console producer published the messages to the topic by running a Kafka
console consumer. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 --topic topic_json gpkafka \

--from-beginning

Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@gpcoord
gpcoord$. /usr/local/greenplum-db/greenplum_path.sh

Construct the Tanzu Greenplum Tanzu configuration file. For example, open a file named
gpsscfg_ex.json in the editor of your choice:

gpcoord$ vi gpsscfg ex.json

Designate a GPSS listen port number of 5019 and a gpfdist port number of 8319 in the
configuration file. For example, copy/paste the following into the gpsscfg ex.json file, and then
save and exit the editor:

"ListenAddress": {
"Host": "",
"Port": 5019

by

"Gpfdist": {
"Host": "",
"Port": 8319

Start the Tanzu Greenplum Tanzu instance in the background, specifying the log directory
./gpsslogs. For example:

gpcoord$ gpss --config gpsscfg _ex.json --log-dir ./gpsslogs &

Construct the load configuration file. Open a file named jsonload cfg.yaml in the editor of your
choice. For example:

gpcoord$ vi jsonload cfg.yaml

Fill in the load configuration parameter values based on your environment. This example assumes:
o Your Tanzu Greenplum coordinator hostname is gpcoord.
o The Tanzu Greenplum server is running on the default port.

o Your Kafka broker host and port is 1ocalhost:9092.

125

Tanzu Greenplum Streaming Server

o You want to write the Kafka data to a Tanzu Greenplum table named json from kafka
located in the public schema of a database named testdb.

o You want to write the customer identifier and expenses data to Greenplum. The
jsonload cfg.yaml file would include the following contents:

DATABASE: testdb
USER: gpadmin
HOST: gpcoord
PORT: 5432
KAFKA:
INPUT:
SOURCE:
BROKERS: localhost:9092
TOPIC: topic_json_gpkafka
COLUMNS :
- NAME: jdata
TYPE: Jjson
FORMAT: json
ERROR_LIMIT: 10

OUTPUT:
TABLE: json_from_kafka
MAPPING:
- NAME: customer_ id
EXPRESSION: (jdata->>'cust id')::int
- NAME: month
EXPRESSION: (jdata->>'month')::int
- NAME: amount_paid
EXPRESSION: (jdata->>'expenses')::decimal
COMMIT:

MINIMAL INTERVAL: 2000
13. Create the target Tanzu Greenplum table named json from kafka. For example:

gpcoord$ psgl -d testdb

testdb=# CREATE TABLE json_from_kafka(customer_id int8, month int4, amount_pai
d decimal(9,2));

14. Exit the psql subsystem:

testdb=# \qg

15. Submit the Kafka data load job to the GPSS instance running on port number 5019. (You may
consider opening a new terminal window to run the command.) For example to submit a job named
kafkajson2gp:

gpcoord$ gpsscli submit --name kafkajson2gp --gpss-port 5019 ./jsonload cfg.yam
1

20200804 12:54:19.25262,116652,info,JobID: d577c£37890b5b6bf4e713a9586e86c9, Job
Name: kafkajson2gp

16. List all GPSS jobs. For example:

126

17.

18.

19.

20.

Tanzu Greenplum Streaming Server

gpcoord$ gpsscli list --all --gpss-port 5019

JobName JobID GPHost GPPort Data
Base Schema Table Topic Status

kafkajson2gp d577c£37890b5b6bf4e713a9586e86¢c9 localhost 5432 test
db public json_from kafka topic_json gpkafka JOB_SUBMITTED

The 1ist subcommand displays all jobs. Notice the entry for the kafkajson2gp that you just
submitted, and that the job is in the Submitted state.

Start the job named kafkajson2gp. For example:

gpcoord$ gpsscli start kafkajson2gp --gpss-port 5019
20200804 12:57:57.35153,117918,1info,Job kafkajson2gp is started

Stop the job named kafkajson2gp. For example:

gpcoord$ gpsscli stop kafkajson2gp --gpss-port 5019
20200804 13:05:09.24280,117506,info,stop job: kafkajson2gp success

Examine the gpss command output and log file, looking for messages that identify the number of
rows inserted/rejected. For example:

-[INFO]:- ... Inserted 9 rows
-[INFO]:- ... Rejected 0 rows

View the contents of the Tanzu Greenplum target table json from kafka:

gpcoord$ psgl -d testdb

testdb=# SELECT * FROM json_from_kafka WHERE customer_ id='1313131'
ORDER BY amount paid;

customer_id | month | amount_paid
_____________ o
1313131 | 11 | 368.27
1313131 | 10 | 492.83
1313131 | 12 | 133,13

(3 rows)

Merging Data from Kafka into Greenplum Using gpsscli

In this example, you merge data from a Kafka topic named customer orders into a Tanzu Greenplum table

named customer orders tbl. You perform the operation as the Greenplum role gpadmin. The table

customer orders tbl resides in the public schema in a Tanzu Greenplum named testdb.

A producer of the Kafka customer orders topic emits customer order messages in CSV format that

include the customer identifier (integer) and an order amount (decimal). For example, a message for a
customer with identifier 123 who spent $456.78 follows:

"123","456.78"

You will run a Kafka console producer to emit customer order messages, start a VMware Tanzu Greenplum
streaming server instance, and use the GPSS gpsscli subcommands to merge and load the data into the

127

Tanzu Greenplum Streaming Server

customer orders tbl Greenplum table. This table has pre-existing data that the merge will overwrite.

Prerequisites

Before you start this procedure, ensure that you:
e Have administrative access to run Kafka and Tanzu Greenplum clusters.

¢ Have configured connectivity as described in both the Tanzu Greenplum streaming server
Prerequisites section and the Kafka Prerequisites.

¢ |dentify and note the ZooKeeper hostname and port.

¢ ldentify and note the hostname and port of the Kafka broker(s).

¢ Identify and note the hostname and port of the Tanzu Greenplum coordinator node.
¢ Register the GPSS extension.

This procedure assumes that you have installed the Apache Kafka distribution. If you are using a different
Kafka distribution, you may need to adjust certain commands in the procedure.

Procedure

1. Login to a host in your Kafka cluster. For example:

$ ssh kafkauser@kafkahost
kafkahost$

2. Create a Kafka topic named customer orders. For example:

kafkahost$ $KAFKA_ INSTALL_DIR/bin/kafka-topics.sh --create \
--zookeeper localhost:2181 --replication-factor 1 --partitions 1 \

--topic customer_orders
3. Open a file named sample customer data.csv in the editor of your choice. For example:

kafkahost$ vi sample customer data.csv
4. Copy/paste the following text to add CSV-format data into the file, and then save and exit:

"1313131","1000.00"
"4444444","99.13"
"1515151","500.05"
"6666666","1.12"
"1717171","3000.03"

5. Stream the contents of the sample customer data.csv file to a Kafka console producer. For
example:

kafkahost$ S$SKAFKA INSTALL DIR/bin/kafka-console-producer.sh \
--broker-list localhost:9092 \

--topic customer_ orders < sample customer_ data.csv

128

https://kafka.apache.org/

10.

1.

12.

Tanzu Greenplum Streaming Server

Run the Kafka console consumer to verify that the Kafka console producer published the
messages to the topic. For example:

kafkahost$ SKAFKA INSTALL DIR/bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9092 --topic customer orders \

--from-beginning

Open a new terminal window, log in to the Tanzu Greenplum coordinator host as the gpadmin
administrative user, and set up the Greenplum environment. For example:

$ ssh gpadmin@gpcoord
gpcoord$. /usr/local/greenplum-db/greenplum path.sh

Construct the the Tanzu Greenplum streaming server configuration file. For example, open a file
named gpsscfg ex.json in the editor of your choice:

gpcoord$ vi gpsscfg ex.json

Designate a GPSS listen port number of 5019 and a gpfdist port number of 8319 in the
configuration file. For example, copy/paste the following into the gpsscfg ex.json file, and then
save and exit the editor:

"ListenAddress": ({
"Host": "",
"Port": 5019

by

"Gpfdist": {
"Host": "",
"Port": 8319

Start the Tanzu Greenplum streaming server instance in the background, specifying the log
directory . /gpsslogs. For example:

gpcoord$ gpss --config gpsscfg ex.json --log-dir ./gpsslogs &

Construct the gpkafka load configuration file. Open a file named custorders cfg.yaml in the
editor of your choice. For example:

gpcoord$ vi custorders_ cfg.yaml

Fill in the load configuration parameter values based on your environment. This example assumes:
o Your Tanzu Greenplum coordinator hostname is gpcoord.
o The Tanzu Greenplum server is running on the default port.
o Your Kafka broker host and port is 1ocalhost:9092.

o You want to write the Kafka data to a Tanzu Greenplum table named
customer orders_ tbl located in the public schema of a database named testdb.

129

13.

14.

15.

16.

Tanzu Greenplum Streaming Server

o You want to write the customer identifier and order data to Greenplum. If the customer is
already present in the table, replace the order amount with the amount read from Kafka. If
the customer is not present in the table, add the customer identifier and order amount. You
will set merge- and update-related properties in the file to reflect this. The
custorders cfg.yaml file would include the following contents:

DATABASE: testdb
USER: gpadmin
HOST: gpcoord
PORT: 5432

KAFKA:
INPUT:
SOURCE :
BROKERS: localhost:9092
TOPIC: customer_orders
COLUMNS :
- NAME: id
TYPE: int

- NAME: order_amount
TYPE: decimal (9,2)
FORMAT: csv
ERROR_LIMIT: 25
OUTPUT:
TABLE: customer orders tbl
MODE: MERGE
MATCH COLUMNS:
- id
UPDATE_ COLUMNS:
- amount
MAPPING:
- NAME: id
EXPRESSION: id
- NAME: amount
EXPRESSION: order amount
COMMIT:
MINIMAL INTERVAL: 2000

Start the psgl subsystem:

gpcoord$ psgl -d testdb
testdb=#

Create the target Tanzu Greenplum table named customer orders tbl, and insert two rows of
data in the table. For example:

CREATE TABLE customer orders tbl(id int8, amount decimal(9,2));
INSERT INTO customer orders tbl VALUES (1717171, 17.17);
INSERT INTO customer orders tbl VALUES (1515151, 15.15);

Exit the psql subsystem:

testdb=# \g

Submit the Kafka data load job to the GPSS instance running on port number 5019. (You may
consider opening a new terminal window to run the command.) For example to submit a job named

130

Tanzu Greenplum Streaming Server

ordersl.

gpcoord$ gpsscli submit --name ordersl --gpss-port 5019 ./custorders cfg.yaml
20200804 12:54:19.25262,116652,info,JobID: d577cf37890b5b6bf4e713a9586e86c9, Job
Name: ordersl

17. List all GPSS jobs. For example:

18.

19.

20.

21.

gpcoord$ gpsscli list --all --gpss-port 5019

JobName JobID GPHost GPPort Data
Base Schema Table Topic Status

ordersl d577cf£37890b5b6bf4e713a9586e86¢c9 localhost 5432 test
db public customer_ orders_tbl customer_ orders JOB_SUBMITTED

The 1ist subcommand displays all jobs. Notice the entry for the orders1 job that you just
submitted, and that the job is in the Submitted state.

Start the job named orders1. For example:

gpcoord$ gpsscli start ordersl --gpss-port 5019
20200804 12:57:57.35153,117918,info,Job ordersl is started

Stop the job named ordersi. For example:

gpcoord$ gpsscli stop ordersl --gpss-port 5019
20200804 13:05:09.24280,117506,info,stop job: ordersl success

Examine the gpss command output and log file, looking for messages that identify the number of
rows inserted/rejected. For example:

-[INFO]:- ... Inserted 5 rows
-[INFO]:- ... Rejected 0 rows

View the contents of the Tanzu Greenplum target table customer orders tbl:

gpcoord$ psgl -d testdb

SELECT * FROM customer_orders_tbl ORDER BY id;

id | amount
_________ b
1313131 | 1000.00
1515151 | 500.05
1717171 | 3000.03
4444444 | 99.13
6666666 | 1.12

(5 rows)

Notice that the amount value for customers with ids 1515151 and 1717171 have been updated to

the total amount read from the Kafka message.

Custom Formatter for Kafka

Tanzu Greenplum Streaming Server

In this example, you create a custom formatter that prepends a text string (provided via an option) to the
Kafka data that it receives. All of the formatter code is provided for you. You register the custom formatter
with VMware Tanzu Greenplum and use it to process incoming Kafka data.

(Refer to Understanding Custom Formatters for information on developing and using a custom formatter with
GPSS.)

The custom formatter example implementation requires that the data start with a four byte header that
identifies the length of the text. For example:

4 bytes header content
0x03 0x00 0x00 0x00 ABC

To run this example, you must have access to running Kafka and Tanzu Greenplum clusters, and you must
have administrative access to Greenplum.

Procedure

Perform the following procedure to register and use a custom formatter in GPSS.
1. Log in to a Tanzu Greenplum host as the gpadmin user and set up your Greenplum environment.

2. Create a work directory:

gpadmin@gpcoord$ mkdir customfmt work

gpadmin@gpcoord$ cd customfmt work

3. Open a file named customfmt.c in an editor and copy/paste the following custom formatter code
into the file:

#include "postgres.h"

#include "access/formatter.h"
#include "catalog/pg proc.h"
#include "fmgr.h"

#include "funcapi.h"

#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/syscache.h"

#include "utils/typcache.h"

/* Do the module magic dance */
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1 (customfmt import);

Datum customfmt import (PG_FUNCTION_ARGS) ;

typedef struct

{
int ncols;
Datum* values;
bool* nulls;
int buflen;
bytea* buffer;

/* formatter options */

132

Tanzu Greenplum Streaming Server

/* The prefix string to be added to the data in text column, like
* prefix='abc ' */
char* prefix;
/* When internal error='l', the query will be stopped immediately. */
bool internal error;

/* When data_exception='1l', the query won't be stopped unless it reache

s
* the error limit. */
bool data_exception;
/* When data_exception_once='1l', the formatter throw the data exception
once
* only. Unless it reaches the error limit, the query should continue.
*/

bool data_exception_once;

} format t;

/*

* OQur format converts all NULLs to real values, for floats that value is NaN
¥/

#define NULL FLOAT8 VALUE get float8 nan{()

static void
parse params (FunctionCallInfo fcinfo, format t* myData)
{
int nargs = FORMATTER_GET_NUM_ARGS (fcinfo);
for (int i = 0; i < nargs; 1i++)
{
/* FORMATTER GET_NTH_ARG_KEY expects index starts from 1 */
const char* key = FORMATTER GET NTH ARG KEY (fcinfo, i + 1);
const char* val = FORMATTER GET_NTH ARG VAL (fcinfo, i + 1);
if (strcmp(key, "prefix") == 0)
{
myData->prefix = pstrdup(val);
}

if (strcmp(key, "internal error") == 0 && (strcmp(val, "1") ==
0))
{
myData->internal error = true;
}
if (strcmp(key, "data_exception") == 0 && (strcmp(val, "1") ==
0))
{
myData->data_exception = true;
}
if (strcmp(key, "data exception once") == 0 && (strcmp(val,
"1") == 0)
{
myData->data exception once = true;
}
}
}
Datum

customfmt import (PG_FUNCTION_ ARGS)

{
HeapTuple tuple;
TupleDesc tupdesc;
MemoryContext m, oldcontext;

format t* myData;

133

Tanzu Greenplum Streaming Server

char* data_buf;

int ncolumns = 0;
int data_ cur;

int data len;

int a, g

/* Must be called via the external table format manager */
if (!CALLED_AS FORMATTER (fcinfo))
elog (ERROR, "customfmt import: not called by format manager");

tupdesc = FORMATTER_GET_ TUPDESC (fcinfo) ;

/* Get our internal description of the formatter */

ncolumns = tupdesc->natts;

myData = (format_ t*)FORMATTER GET_USER CTX (fcinfo);

if (myData == NULL)

{
myData = pallocO (sizeof (format_t));
myData->ncols = ncolumns;
myData->values = palloc(sizeof (Datum) * ncolumns);
myData->nulls = palloc(sizeof (bool) * ncolumns);

/* parse parameters */
parse params (fcinfo, myData);

/* misc verification */
for (i = 0; i < ncolumns; i++)
{
0id type = tupdesc->attrs[i]->atttypid;
// int32 typmod = TupleDescAttr (tupdesc, i)->atttypmod;

/* Don't know how to format dropped columns, error for
now */
if (tupdesc->attrs[i]->attisdropped)
ereport (ERROR, (errcode (ERRCODE_INTERNAL_ERRO
R),
errmsg ("customfmt import: dropp
ed columns")));

switch (type)

{
case FLOAT8O0ID:
case VARCHAROID:
case BPCHAROID:
case TEXTOID:

break;
default: {
ereport (ERROR, (errcode (ERRCODE_ INTERNA
L_ERROR),
errmsg ("customfmt impor
t error: "
"unsupported dat
a type")));

break;

134

Tanzu Greenplum Streaming Server

FORMATTER SET USER CTX (fcinfo, myData);
}
if (myData->ncols != ncolumns)
ereport (ERROR, (errcode (ERRCODE_ INTERNAL ERROR),
errmsg ("customfmt import: unexpected change of
output "
"record type")));

/* get our input data buf and number of valid bytes in it */
data_buf = FORMATTER_GET_ DATABUF (fcinfo) ;

data_len = FORMATTER_GET_ DATALEN (fcinfo) ;

data_cur = FORMATTER_GET_ DATACURSOR (fcinfo);

/* start clean */
MemSet (myData->values, 0, ncolumns * sizeof (Datum));

MemSet (myData->nulls, true, ncolumns * sizeof (bool));

& MAIN FORMATTING CODE

* Currently this code assumes:

* - Homogoneos hardware => No need to convert data to network byte or
der

* - Support for TEXT/VARCHAR/BPCHAR/FLOATS8 only

* - Length Prefixed strings

* - No end of record tags, checksums, or optimizations for alignment.

* - NULL values are cast to some sensible default value (NaN, "")

*/
m = FORMATTER GET PER ROW MEM CTX (fcinfo);

oldcontext = MemoryContextSwitchTo (m) ;

if (myData->internal error)
{
/* Reporting an internal error will stop query immediately. NOT
HING will
* be saved into the error log.*/

MemoryContextSwitchTo (oldcontext) ;
FORMATTER_SET_BAD_ROW_DATA (fcinfo, data buf, data_len);
FORMATTER SET BYTE NUMBER (fcinfo, data len);

ereport (ERROR,

(errcode (ERRCODE INTERNAL ERROR),
errmsg ("reports error in example. data len: %d, data c
ur: %d4d",
data len, data cur)));
}
if (myData->data_ exception)
{

MemoryContextSwitchTo (oldcontext) ;
FORMATTER_SET_BAD ROW_DATA (fcinfo, data_buf, data len);
FORMATTER SET BYTE NUMBER (fcinfo, data_len);

ereport (ERROR,

(errcode (ERRCODE_DATA EXCEPTION),
errmsg ("data exception in example. data_ len: %d, data_

cur: %d4",

135

data len, data_cur)));
}
if (myData->data_ exception_once)
{
int32 len;

Tanzu Greenplum Streaming Server

memcpy (&len, data buf + data cur, sizeof (len));

myData->data_ exception once = false;

MemoryContextSwitchTo (oldcontext) ;

FORMATTER_SET_BAD ROW_DATA (fcinfo, data_buf, data_ len);

FORMATTER SET BYTE NUMBER (fcinfo, data len);

ereport (ERROR,
(errcode (ERRCODE_DATA_ EXCEPTION),
errmsg ("data exception in example. data_ len: %d, data_
cur: %d4",
data_len, data_cur)));
}
for (i = 0; i < ncolumns; i++)
{
0id type = tupdesc->attrs[i]->atttypid;
int remaining = 0;
int attr len = 0;
remaining = data len - data cur;
switch (type)
{
case FLOAT80ID: {
float8 value;
attr _len = sizeof(value);
if (remaining < attr_len)
{
MemoryContextSwitchTo (oldcontext) ;
ereport (ERROR, (errcode (ERRCODE_DATA EX
CEPTION),
errmsg ("incomplete dat
a")))i
}
memcpy (&value, data_buf + data_cur, attr_len);
if (value != NULL FLOAT8 VALUE)
{
myData->nulls[1i] = false;
myData->values[i] = Float8GetDatum(valu
e);

/* TODO: check for nan? */

break;

case TEXTOID:
case VARCHAROID:
case BPCHAROID: {

text* value;

136

Tanzu Greenplum Streaming Server

int32 len;

bool

if
{

f(len));
t)
XCEPTION),

5d",

of varlen datatype:

nextlen =

remaining >= sizeof (len);

(nextlen)

memcpy (&len, data buf + data cur, sizeo

if
{

(len < 0)

MemoryContextSwitchTo (oldcontex

ereport (ERROR,
(errcode (ERRCODE_DATA_E

errmsg ("invalid length

len))):

/* if len or data bytes don't exist in this buf

fer, return */
if
(len) < len)))
{
grity already. This
CEPTION),
a")));
}
if (len

the formatter

VARHDRSZ) ;

RHDRSZ) ;

prefixlen);

n), len);

(!nextlen

|| (nextlen && (remaining - sizeof

MemoryContextSwitchTo (oldcontext) ;
/*

gpss extension handled the data inte

* should not happen.*/
ereport (ERROR, (errcode (ERRCODE_ DATA EX

errmsg ("incomplete dat

> 0)

int prefixlen 0;
/* Add the prefix if it has been set in

*/

* options.

if (myData->prefix)
{
prefixlen = strlen(myData->pref
}
value = (text*)palloc(len + prefixlen +

SET VARSIZE (value, len + prefixlen + VA

memcpy (VARDATA (value), myData->prefix,

memcpy (VARDATA (value)

data_buf + data_cur + sizeof (le

+ prefixlen,

myData->nulls[i] = false;

137

4.
5.

Tanzu Greenplum Streaming Server

myData->values[i] = PointerGetDatum(val
ue) ;
}
attr len = len + sizeof(len);
break;
}
default:
MemoryContextSwitchTo (oldcontext) ;
ereport (ERROR, (errcode (ERRCODE_INTERNAL_ERRO
R) 4
errmsg ("customfmt import: unsup
ported "
"datatype, id %d:",
type))):
break;
}
/* add byte length of last attribute to the temporary cursor */
data cur += attr len;
}
/% ========——————————=——————————————————=————=———=———=—=——=—=—=——=—=—=——=—=——=—==—====
=/
MemoryContextSwitchTo (oldcontext) ;
FORMATTER SET DATACURSOR (fcinfo, data_cur);
tuple = heap form tuple(tupdesc, myData->values, myData->nulls);
/* hack... pass tuple here. don't free prev tuple - the executor does i
& @/
((FormatterData*) fcinfo->context)->fmt tuple = tuple;

FORMATTER_RETURN_TUPLE (tuple) ;

Save the file and exit the editor.

Open a file named Makefile in an editor and copy/paste the following directives into the file:

MODULE_big = customfmt_example

OBJS = customfmt.o

PG_CPPFLAGS = -I$(shell $(PG_CONFIG) --includedir)
SHLIB_LINK = -L$ (shell $(PG_CONFIG) --1libdir)

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $ (PGXS)

Save the file and exit the editor.

Generate the custom formatter function definition. Open a file named customfmt example.sqgl in
an editor and copy/paste the following crReaTE rFuncTTON call into the file:

138

10.

1.

12.

13.

14.

15.
16.

17.

Tanzu Greenplum Streaming Server

CREATE OR REPLACE FUNCTION customfmt in() RETURNS record
AS 'Slibdir/customfmt example.so', 'customfmt import'
LANGUAGE C STABLE;

Save the file and exit the editor.

Copy the file to your Tanzu Greenplum installation; you must have administrative privileges to copy
the file:

gpadmin@gpcoord$ cp customfmt example.sqgl /usr/local/greenplum-db/lib/postgresq
1/

Build the custom formatter shared library:
gpadmin@gpcoord$ make

The make command generates a shared library named customfmt example.so in the current
directory.
Copy the shared library to your Tanzu Greenplum installation; you must have administrative

privileges to copy the file:

gpadmin@gpcoord$ cp customfmt example.so /usr/local/greenplum-db/lib/postgresqg
1/

Create a test database:
gpadmin@gpcoord$ createdb testdb
Register the custom formatter function in this database:

gpadmin@gpcoord$ psqgl -d testdb -U gpadmin -f $GPHOME/share/postgresgl/customfm
t_example.sql

Create a Greenplum table in the database:

gpadmin@gpcoord$ psql -d testdb -U gpadmin -c 'CREATE TABLE test table(str col

umn text); '

Create a Kafka topic named customtest.

Start a GPSS server:
gpadmin@gpcoord$ gpss &

Create a version 2 Kafka load configuration file; copy/paste the following into a file named

kafka custom formatter.yml:

DATABASE: testdb
USER: gpadmin
HOST: localhost
PORT: 15432
VERSION: 2
KAFKA:

139

Tanzu Greenplum Streaming Server

INPUT:
SOURCE :
BROKERS: localhost:9092
TOPIC: test
VALUE:
COLUMNS:
- NAME: value
TYPE: text
FORMAT: custom
CUSTOM_OPTION:
NAME: customfmt in
PARAMSTR: prefix="kafka msg "
ERROR_LIMIT: 2
OUTPUT:
TABLE: test_table
MODE: INSERT
MAPPING:
- NAME: str_column
EXPRESSION: value

18. Submit the job:

gpadmin@gpcoord$ gpsscli submit kafka custom formatter.yml
19. Start the job:

gpadmin@gpcoord$ gpsscli start kafka custom formatter

20. Generate a binary test data record and save to a file named data example.bin.

gpadmin@gpcoord$ cat "0x03 0x00 0x00 0x00 O0x41 0x42 0x43" > input.txt
gpadmin@gpcoord$ xxd -r -p input.txt data example.bin

21. Load the test data into Kafka:

gpadmin@gpcoord$ cat data example.bin | kafka-console-producer --broker-list lo

calhost:9292 --topic customtest

22. Examine the Greenplum test table table. psql -d testdb -U gpadmin -c 'SELECT * FROM
test table;'

Best Practices

This topic presents best practices to follow when you use the VMware Tanzu Greenplum streaming server
Kafka Integration.

Choosing a Commit Threshold

GPSS supports two mechanisms to control how and when it commits Kafka data to VMware Tanzu
Greenplum: a time period or a number of rows. You specify one or both of MINIMAL INTERVAL Of MAX ROW in

the Kafka load configuration file.

140

Tanzu Greenplum Streaming Server

For best results, try various settings of min1MAL INTERVAL to determine what value works best in your

environment.

When message flow is heavy, GPSS may receive and buffer many messages during the
MINIMAL INTERVAL time period. In this situation, also providing a Max row setting may mitigate any high

memory usage scenarios.

14

Tanzu Greenplum Streaming Server

Loading File Data into Greenplum

You can use the gpsscli utility to load data from a file or from the stdout of a command into Tanzu
Greenplum.

Load Procedure
You will perform the following tasks when you use the VMware Tanzu Greenplum streaming server to load
file or command output data into a Tanzu Greenplum table:
1. Ensure that you meet the Prerequisites.
Register the Tanzu Greenplum streaming server extension.
Identify the format of the data.
Construct the load configuration file.
Create the target Tanzu Greenplum table.
Assign Tanzu Greenplum role permissions to the table, if required.

Run the gpsscli Client Commands to load the data into Tanzu Greenplum.

©® N o o ~ W D

Check for load errors.

Prerequisites
Before using the gpsscli utilities to load file or command output data to Tanzu Greenplum, ensure that:
¢ Your systems meet the Prerequisites documented for the Tanzu Greenplum streaming server.

e The file or command is accessible on the ETL server host, and the operating system user running
the gpss server process has the appropriate permissions to access the file or run the command.

About Supported Data Formats

To write file or command output data into a Tanzu Greenplum table, you must identify the format of the data
in the load configuration file.

The Tanzu Greenplum streaming server supports loading files of the following formats:

Format Description

avro Avro-format data. Specify the avro format when you want to load a single-object encoded Avro file. GPSS
reads Avro data from the file and loads it into a single JSON-type column. You must define a mapping if you
want GPSS to write the data into specific columns in the target Tanzu Greenplum table.

GPSS supports 1ibz-, 1zma-, and snappy-compressed Avro data.

142

Tanzu Greenplum Streaming Server

Format Description

binary Binary format data. Specify the binary format when your file is binary format. GPSS reads binary data from
the file and loads it into a single bytea-type column.

csv Comma-delimited text format data. Specify the csv format when your file data is comma-delimited text and
conforms to RFC 4180. The file may not contain line ending characters (CR and LF).

custom Data of a custom format, parsed by a custom formatter function.

delimited Text data separated by a configurable delimiter. The delimited data format supports a multi-byte delimiter.
json, jsonl JSON- or JSONB-format data. Specify the json format when the file is in JSON or JSONB format. GPSS can
(version 2 read JSON data as a single object or can read a single JSON record per line. You must define a mapping if
only) you want GPSS to write the data into specific columns in the target Tanzu Greenplum table.

Note: GPSS supports JSONB-format data only when loading to Greenplum 6.

Note: Specify FORMAT: jsonl in version 2 format load configuration files. Specify json with is jsonl: true
in version 3 format load configuration files.

Constructing the filesource.yaml Configuration File

You configure a data load operation from a file or command output to Tanzu Greenplum via a YAML-
formatted configuration file. This configuration file includes parameters that identify the source file or
command and information about the Tanzu Greenplum connection and target table, as well as error
thresholds for the operation.

The Tanzu Greenplum streaming server supports versions 2 and 3 of the YAML configuration file when you
load data into Greenplum from a file or command output. Versions 2 and 3 of the configuration file format
support loading file/command and meta data to Greenplum.

Refer to the filesource-v2.yaml reference page for configuration file format and the configuration properties
supported. You may find a quick start guide and sample YAML configuration files under the
SGPHOME/docs/cli help/gpss directory.

A sample version 2 file load YAML configuration file named 1ocadfromfile2.yaml follows:

DATABASE: ops
USER: gpadmin
PASSWORD: changeme
HOST: mdw-1

PORT: 5432
VERSION: 2

FILE:
INPUT:
SOURCE:
URL: file:///tmp/file.csv
VALUE:
COLUMNS :
- NAME: id

TYPE: int
- NAME: cname
TYPE: text
- NAME: oname
TYPE: text
FORMAT: delimited

143

https://tools.ietf.org/html/rfc4180

Tanzu Greenplum Streaming Server

DELIMITED OPTION:
DELIMITER: "\t"
EOL_PREFIX: "SSEOLS$S"
QUOTE: '&'
ESCAPE: '|'

META:
COLUMNS:
- NAME: meta
TYPE: Jjson
FORMAT: json
ERROR_LIMIT: 25
OUTPUT:
SCHEMA: gpschema
TABLE: gptable
MODE: INSERT
MAPPING:
- NAME: id
EXPRESSION: id
- NAME: cname
EXPRESSION: cname
- NAME: fname
EXPRESSION: (meta->>'filename') ::text
SCHEDULE :
RETRY INTERVAL: 500ms
MAX RETRIES: 2

Tanzu Greenplum Options (Version 2-Focused)

You identify the Tanzu Greenplum connection options via the DATABASE, USER, PASSWORD, HOST, and PORT

parameters.

The veErsTON parameter identifies the version of the GPSS YAML configuration file.

ﬁ You must specify version 2 when you load from a file or command output data source into
Greenplum using this format.

Input Options

You can direct GPSS to load from a file or from the stdout of a command:

¢ Specify a file location using the sourck: URL property. GPSS supports wildcards in the file path. If
you want to read all files in a directory, specify dirname/*.

+ Alternatively, you can load the stdout of a command by specifying the command and execution
options using the properties in the the sourck: Exec block.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined in
VALUE : COLUMNS : NAME With a column name in the target Tanzu Greenplum OUTPUT : TABLE:

¢ You must identify the data elements in the order in which they appear in the file or command
output.

¢ You must provide the same name for each data element and its associated Tanzu Greenplum table
column.

144

Tanzu Greenplum Streaming Server

¢ You must specify a compatible data type for each data element and its associated Tanzu
Greenplum table column.

The vaLUE block must specify a ForvMAT. The vALUE : FORMAT keyword identifies the format of the file. GPSS
supports comma-delimited text (csv), binary (binary), or JSON/JSONB (3son), and Avro (avro) format
files. GPSS also supports data that is separated by a configurable multi-byte delimiter (delimited).

When you provide a META block, you must specify a single JSON-type corumns and the FORMAT: json.
Meta data for a file is a single text property named filename. GPSS does not support meta data when
loading from command output.

The FILTER parameter identifies a filter to apply to the data before it is loaded into Tanzu Greenplum. If the
filter evaluates to true, GPSS loads the data. The data is dropped if the filter evaluates to false. The filter
string must be a valid SQL conditional expression and may reference one or more vALUE column names.

The ErRrROR LIMIT parameter identifies the number of errors or the error percentage threshold after which
GPSS should exit the load operation.

FILE:OUTPUT Options

You identify the target Tanzu Greenplum schema name and table name via the F1LE: OUTPUT: SCHEMA and
TABLE parameters. You must pre-create the Tanzu Greenplum table before you attempt to load file or
command output data.

The default load mode is to insert data into the Tanzu Greenplum table. GPSS also supports updating and
merging data into a Greenplum table. You specify the load MopE, the MATCH COLUMNS and UPDATE COLUMNS,
and any UPDATE CONDITIONS that must be met to merge or update the data. In MERGE MODE, you can also
specify orRDER cOLUMNS to filter out duplicates and a DELETE CONDITION.

You can override the default mapping of the INPUT: VALUE : cOLUMNS by specifying a MAPPING block in which
you identify the association between a specific column in the target Tanzu Greenplum table and a data
value element. You can also map the MET2 data column, and map a Tanzu Greenplum table column to a
value expression.

ﬁ When you specify a MAPPING block, ensure that you provide entries for all data elements of
interest - GPSS does not automatically match column names when you provide a
MAPPING.

About the Merge Load Mode

MERGE mode is similar to an upseRT operation; GPSS may insert new rows in the database, or may update
an existing database row that satisfies match and update conditions. GPSS deletes rows in MERGE mode
when the data satisfies an optional pELETE conpITION that you specify.

GPSS stages a merge operation in a temporary table, generating the SQL to populate the temp table from
the set of ouTpuUT configuration properties that you provide.

GPSS uses the following algorithm for MERGE mode processing:

1. Create a temporary table like the target table.

145

Tanzu Greenplum Streaming Server

2. Generate the SQL to insert the source data into the temporary table.

1. Add the MapPPINGS.
2. Addthe FILTER.
3. Usewmarcu corumns and ORDER COLUMNS to filter out duplicates.

3. Update the target table from rows in the temporary table that satisfy MaTcH corLumns,
UPDATE COLUMNS, and UPDATE CONDITION.

4. Insert non-matching rows into the target table.
5. Delete rows in the target table that satisfy marcu corumns and the DELETE CONDITION.

6. Truncate the temporary table.

About the JSON Format and Column Type
When you specify FORMAT: json Or FORMAT: jsonl, valid corumn: TYPES for the data include json or
jsonb. You can also specify the new GPSS gp jsonb oOr gp_json column types.

e gp jsonb is an enhanced JSONB type that adds support for \u escape sequences and unicode.
For example, gp_jsonb can escape \ubD8B and \u0000 as text format, but jsonb treats these
characters as illegal.

e gp jsonis an enhanced JSON type that can tolerate certain illegal unicode sequences. For
example, gp_json automatically escapes incorrect surrogate pairs and processes \u0000 as
\\u0000. Note that unicode escape values cannot be used for code point values above 007 when
the server encoding is not UTFs.

You can use the gp jsonb and gp json data types as follows:
e As the coruMmn: TYPE when the target Tanzu Greenplum table column type is §son or jsonb.

¢ InawmappING When the target Tanzu Greenplum column is text or varchar. For example:
EXPRESSION: (j->>'a')::text

¢ InawMAPPING when FORMAT: avro and the target Tanzu Greenplum column is §son or jsonb. For
example:

EXPRESSION: j::gp_ Jjsonb
or
EXPRESSION: j::gp_json

¢ InamMaPPING when FORMAT: avro and the target Tanzu Greenplum column is text or varchar. For
example:

EXPRESSION: (j::gp_jsonb->>'a')::text

or

146

Tanzu Greenplum Streaming Server

EXPRESSION: (j::gp_Json->>'a')::text

ﬁ The gp_jsonb and gp_json data types are defined in an extension named dataflow. You
must CREATE EXTENSTON dataflow; in each database in which you choose to use these
data types.

Preserving lll-Formed JSON Escape Sequences

GPSS exposes a configuration parameter that you can use with the gp jsonb and gp_json types. The
name of this parameter is gpss.json preserve i1l formed prefix. When set, GPSS does not return an
error when it encounters an ill-formed JSON escape sequence with these types, but instead prepends it with
the prefix that you specify.

For example, if gpss.json preserve ill formed prefix is set to the string "##" as follows:
SET gpss.json_preserve ill formed prefix = "##";

and GPSS encounters an ill-formed JSON sequence such as the orphaned low surrogate \ude04x, GPSS
writes the data as ##\ude04x instead.

About META, VALUESs, and FORMATSs

You can specify the avro, binary, csv, delimited, Or json data format in the Version 2 configuration file
INPUT: VALUE : FORMAT, With some restrictions. You cannot specify a META block when TNPUT: VALUE : FORMAT

is csv.
About Transforming and Mapping Input Data

You can define a MAPPING between the input data (vALUE: conuMns and META : cOLUMNS) and the columns in
the target Tanzu Greenplum table. Defining a mapping may be useful when you have a multi-field input
column (such as a JSON-type column), and you want to assign individual components of the input field to
specific columns in the target table.

You might also use a MAPPING to assign a value expression to a target table column. The expression must
be one that you could specify in the seLECT list of a query, and can include a constant value, a column
reference, an operator invocation, a built-in or user-defined function call, and so forth.

If you choose to map more than one input column in an expression, you can can create a user-defined
function to parse and transform the input column and return the columns of interest.

For example, suppose you are loading a JSON file with the following contents:
{ "customer id": 1313131, "some_intfield": 12 }
{ "customer_ id": 77, "some intfield": 7 }
{ "customer_ id": 1234, "some_intfield": 56 }

You could define a user-defined function, udf parse json(), to parse the data as follows:

=> CREATE OR REPLACE FUNCTION udf parse_ json(value Jjson)
RETURNS TABLE (x int, y text)

147

Tanzu Greenplum Streaming Server

LANGUAGE plpgsgl AS $$

BEGIN

RETURN query

SELECT ((value->>'customer id')::int), ((value->>'some intfield')::text);
END $S;

This function returns the two fields in each JSON record, casting the fields to integer and text, respectively.

An example MaPPING for file data in a JSON-format FILE: INPUT: COLUMNS hamed jdata follows:

MAPPING:
cust_id: (jdata->>'customer_id')
field2: ((jdata->>'some intfield') * .075)::decimal

j1, j2: (udf parse json(jdata)).*
The Tanzu Greenplum table definition for this example scenario is:

=> CREATE TABLE tlmap(cust id int, field2 decimal(7,2), jl int, j2 text);

Creating the Greenplum Table

You must pre-create the Greenplum table before you load data into Tanzu Greenplum. You use the
FILE:OUTPUT: SCHEMA and TABLE load configuration file parameters to identify the schema and table

names.

The target Greenplum table definition must include each column that GPSS will load into the table. The
table definition may include additional columns; GPSS ignores these columns, and loads no data into them.

The name and data type that you specify for a column of the target Tanzu Greenplum table must match the
name and data type of the related data element. If you have defined a column mapping, the name of the
Tanzu Greenplum column must match the target column name that you specified for the mapping, and the
type must match the target column type or expression that you define.

The creaTE TABLE command for the target Tanzu Greenplum table receiving the data defined in the
loadfromfile2.yaml file presented in the Constructing the filesource.yaml Configuration File section
follows:

testdb=# CREATE TABLE payables.expenses2(id int8, cname text, fname text);

148

Tanzu Greenplum Streaming Server

Loading from S3 into Greenplum (Beta)

You can use the gpsscli utility to load data from S3 into VMware Tanzu Greenplum. The GPSS s3 data
source uses the Tanzu Greenplum s3 Protocol to read data into an s3 external table and write it to a
Greenplum table. Tanzu Greenplum segment instances read the data from S3 in parallel, and similarly write
the data to Greenplum in parallel. GPSS is not involved in the data transfer.

ﬁ The GPSS s3 data source does not read directly from S3.

The GPSS s3 data source can load text and CSV files residing on S3. The data source also supports
loading gzip-compressed versions of these files.

Load Procedure

You will perform the following tasks when you use the VMware Tanzu Greenplum streaming server to load
S3 data into a Tanzu Greenplum table:

1. Ensure that you meet the Prerequisites.

Register the Tanzu Greenplum streaming server extension.
Identify the format of the data.

Construct the load configuration file.

Create the target Tanzu Greenplum table.

Assign Tanzu Greenplum role permissions to the table, if required.

Run the gpsscli Client Commands to load the data into Tanzu Greenplum.

©® N o g » w0 DN

Check for load errors.

Prerequisites
Before using the gpssci1i utilities to load S3 data to Tanzu Greenplum, ensure that:

¢ Your systems meet the Prerequisites documented for the Tanzu Greenplum Streaming Server.

¢ You have configured the s3 protocol as described in the VMware Tanzu Greenplum s3 Protocol
documentation.

¢ You can identify the URI of the S3 file that you want to load.

¢ You can identify an S3 access ID and secret key that have the permissions required to access the
file.

149

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/admin_guide-external-g-s3-protocol.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/admin_guide-external-g-s3-protocol.html

About Supported File Formats

Tanzu Greenplum Streaming Server

To write data from S3 into a Tanzu Greenplum table, you must identify the format of the file in the load

configuration file.

The Tanzu Greenplum streaming server s3 data source supports loading files of the following formats:

Format

csv

Description

Comma-delimited text format data. Specify the csv format when your file data is comma-delimited text and

conforms to RFC 4180. The file may not contain line ending characters (CR and LF).

text
from S3.

gzipped csv and
text files

Constructing the s3source.yaml Configuration File

Plain text format. Specify the csv format and an empty delimiter when you want to read a plain text file

Gzip-compressed file. Specify the csv format and the de1imiter (the gzipped file is a csv file) or an empty
delimiter (the gzipped file is a plain text file) when you want to read a . gz file from S3.

You configure a data load operation from a file to Tanzu Greenplum via a YAML-formatted configuration file.
This configuration file includes parameters that identify the source file and information about the Tanzu
Greenplum connection and target table, as well as error thresholds for the operation.

The Tanzu Greenplum streaming server supports version 3 (Beta) of the YAML configuration file when you
load data into Greenplum from S3. Refer to the s3source-v3.yaml reference page for the configuration file
format and the configuration properties supported.

A sample version 3 s3 load YAML configuration file named 1oadfroms3.yaml follows:

version: v3
targets:
- gpdb:

host: localhost
port: 6000
user: bill
password: changeme
database: testdb
work_ schema: public
error_limit: "25"

filter_expression:

"test_ filter"

tables:

- table: s3 target
schema: public
mode:

insert: {}
sources:
= 8338
uri:

- "s3://s3-us-east-1l.amazonaws

content:

csv:
columns:

- name: cl
type: text

- name: c2
type: int

delimiter:

.com/mydir/mybucket/data0000"

150

https://tools.ietf.org/html/rfc4180

Tanzu Greenplum Streaming Server

s3param:
version: 1
accessid: 123
secret: 456
chunksize: 4096
threadnum: 4
gpcheckcloud newline: "\n"
autocompress: false
encryption: false
verifycert: false

low_speed limit: 1

Creating the Greenplum Table

You must pre-create the Greenplum table before you load S3 data into Tanzu Greenplum. You use the
table:schema and tables:table load configuration file properties to identify the schema and table names.

The target Greenplum table definition must include each column that GPSS will load into the table. The
table definition may include additional columns; GPSS ignores these columns, and loads no data into them.

The name and data type that you specify for a column of the target Tanzu Greenplum table must match the
name and data type of the related, S3 file data element. If you have defined a column mapping, the name of
the Tanzu Greenplum column must match the target column name that you specified for the mapping, and
the type must match the target column type or expression that you define.

A creaTE TABLE command for the target Tanzu Greenplum table receiving the file data defined in the
loadfroms3.yaml file presented in the Constructing the s3source.yaml Configuration File section follows:

testdb=# CREATE TABLE s3 target(cl text, c2 int);

151

Tanzu Greenplum Streaming Server

Loading RabbitMQ Data into Greenplum

The GPSS RabbitMQ data source loads data from a RabbitMQ queue (the traditional AMQP
implementation) or a RabbitMQ stream (persistent and replicated structure available in RabbitMQ version
3.9 and later) into VMware Tanzu Greenplum.

You can use the gpsscli utility to load RabbitMQ data/messages into Tanzu Greenplum. The GPSS server,
gpss, is a RabbitMQ consumer. It ingests streaming data from a single RabbitMQ queue or stream using
Tanzu Greenplum readable external tables to transform and insert or update the data into a target
Greenplum table. You identify the RabbitMQ server, queue or stream name, virtual host, data format, and
the Greenplum connection options and target table definition in a YAML-formatted load configuration file that
you provide to the utility.

Load Procedure
You will perform the following tasks when you use the VMware Tanzu Greenplum streaming server to load
RabbitMQ message data into a Tanzu Greenplum table:
1. Ensure that you meet the Prerequisites.
Register the Tanzu Greenplum streaming server extension.
Identify the format of the RabbitMQ data.
Construct the load configuration file.
Create the target Tanzu Greenplum table.
Assign Tanzu Greenplum role permissions to the table, if required.

Run the gpsscli Client Commands to load the data into Tanzu Greenplum.

®©® N o o » w0 DN

Check for load errors.

Prerequisites
Before using the gpssc1i utility to load RabbitMQ data to Tanzu Greenplum, ensure that you:

¢ Meet the Prerequisites documented for the Tanzu Greenplum streaming server, and configure and
start the server.

e Have access to a running RabbitMQ cluster, and that you can identify the hostname and port
number of the RabbitMQ server serving the data.

e Can identify the name of the RabbitMQ queue or stream of interest.

¢ Can run the command on a host that has connectivity to:
o Each RabbitMQ host in the RabbitMQ cluster.

o The Tanzu Greenplum coordinator and all segment hosts.

152

https://www.rabbitmq.com/queues.html
https://www.rabbitmq.com/streams.html

Tanzu Greenplum Streaming Server

About Supported Message Data Formats

The Greenplum streaming server supports RabbitMQ message value data in the following formats:

Format Description
binary Binary format data. GPSS reads binary data from RabbitMQ only as a single bytea-type column.
csv Comma-delimited text format data.
custom Data of a custom format, parsed by a custom formatter function.
delimited Text data separated by a configurable delimiter.
json, jsonl JSON- or JSONB-format data. Specify the json format when the file is in JSON or JSONB format. GPSS can
(version 2 read JSON data as a single object or can read a single JSON record per line. You must define a mapping if
only) you want GPSS to write the data into specific columns in the target Tanzu Greenplum table.
ﬂ Note: GPSS supports JSONB-format data only when loading to Greenplum 6.
ﬁ Note: Specify FORMAT: jsonl in version 2 format load configuration files. Specify json

with is jsonl: true in version 3 format load configuration files.

To write RabbitMQ message data into a Tanzu Greenplum table, you must identify the data format in the
load configuration file.

Binary

Use the binary format when your RabbitMQ message data is a stream of bytes. GPSS reads binary data
from RabbitMQ and loads it into a single bytea-type column.

csv

Use the csv format when your RabbitMQ message data is comma-delimited text and conforms to RFC
4180. The message content may not contain line ending characters (CR and LF).

Data in csv format may appear in RabbitMQ messages as follows:

"1313131","12","backorder","1313.13"
"3535353","11", "shipped","761.35"
"7979797","11","partial"”,"18.72"

Custom

The Tanzu Greenplum streaming server provides a custom data formatter plug-in framework for RabbitMQ
messages using user-defined functions. The type of RabbitMQ message data processed by a custom
formatter is formatter-specific. For example, a custom formatter may process compressed or complex data.

Delimited Text

The Tanzu Greenplum streaming server supports loading RabbitMQ data delimited by one or more
characters that you specify. Use the delimited format for such data. The delimiter may be a multi-byte

153

https://tools.ietf.org/html/rfc4180

Tanzu Greenplum Streaming Server

value and up to 32 bytes in length.You can also specify quote and escape characters, and an end-of-line
prefix.

ﬁ The delimiter may not contain the quote or escape characters.

When you specify a quote character:
e The left and right quotes are the same.
¢ Each data element must be quoted. GPSS does not support mixed quoted and unquoted content.
¢ You must also define an escape character.

« GPSS keeps the original format of any character between the quotes, except the quote and escape
characters. This especially applies to the delimiter and \n, which do not require additional escape if
they are quoted.

¢ The quote character is presented as the escape character plus the quote character (for example,
\).

e The escape character is presented as the escape character plus the escape character (for
example, \)

e GPSS parses multiple escape characters from left to right.
When you do not specify a quote character:
e The escape character is optional.

+ If you do not specify an escape character, GPSS treats the delimiter as the column separator, and
treats any end-of-line prefix plus \n as the row separator.

e If you do specify an escape character:
o GPSS uses the escape character plus the delimiter as the column separator.
o GPSS uses the escape character plus the end-of-line prefix plus \n as the row separator.
o The escape character plus the escape character is the escape character itself.
o GPSS parses multiple escape characters from left to right.

Sample data using a pipe ('|') delimiter character follows:

1313131|12|backorder|1313.13
353535311 |shipped]|761.35
797979711 |partial|18.72

JSON (single object)

Specify the json format when your RabbitMQ message data is in JSON or JSONB format and you want
GPSS to read JSON data from RabbiMQ as a single object into a single column (per the JSON
specification, newlines and white space are ignored). You must define a mapping if you want GPSS to write
the data into specific columns in the target Tanzu Greenplum table.

154

Tanzu Greenplum Streaming Server

ﬁ GPSS supports JSONB-format data only when loading to Greenplum 6.

JSON (single record per line)

Specify FORMAT: jsonl in version 2 format load configuration files or specify json with is jsonl: truein
version 3 format load configuration files when your RabbitMQ message data is in JSON format, single
JSON record per line. You must define a mapping if you want GPSS to write the data into specific columns
in the target Tanzu Greenplum table.

Sample JSON message data:

{ "cust_id": 1313131, "month": 12, "amount paid":1313.13 }
{ "cust_id": 3535353, "month": 11, "amount paid":761.35 }
{ "cust_id": 7979797, "month": 11, "amount paid":18.82 }

Registering a Custom Formatter

A custom data formatter for RabbitMQ messages is a user-defined function. If you are using a custom
formatter, you must create the formatter function and register it in each database in which you will use the
function to write RabbitMQ data to Greenplum tables.

Constructing the rabbitmqg.yaml Configuration File

You configure a data load operation from RabbitMQ to Tanzu Greenplum via a YAML-formatted configuration
file. This configuration file includes parameters that identify the source RabbitMQ data and information
about the Tanzu Greenplum connection and target table, as well as error and commit thresholds for the
operation.

When loading from RabbitMQ, the Tanzu Greenplum streaming server supports two versions of the YAML
configuration file: version 2 and version 3.

Refer to the rabbitmg-v2.yaml reference page for Version 2 configuration file format and the configuration
parameters that this version supports. rabbitmg-v3.yaml describes the Version 3 format. You may find a
quick start guide and sample YAML configuration files under the $GPHOME /docs/cli help/gpss directory.

Contents of a sample gpssc1i Version 2 YAML configuration file named 1oadcfgrmg2.yaml follows:

DATABASE: testdb
USER: gpadmin
PASSWORD: password
HOST: localhost
PORT: 15432
VERSION: 2
RABBITMOQ:
INPUT:
SOURCE :
SERVER: gpdmin:changeme@localhost:5552
STREAM: test stream
VIRTUALHOST: vhost for gpss
DATA:
COLUMNS:
- NAME: cl

155

TYPE: int

- NAME: c2

TYPE: int
- NAME: path
TYPE: text

FORMAT: CSV
OUTPUT:

SCHEMA: "public"

TABLE: tbl int text column

MODE: MERGE
MATCH_COLUMNS:

= @1

UPDATE_COLUMNS:

= @2
ORDER_COLUMNS :
- path

UPDATE_CONDITION: c2
DELETE_CONDITION: cl

MAPPING:
- NAME: cl
EXPRESSION:
- NAME: c2
EXPRESSION:
- NAME: path
EXPRESSION:
METADATA:

I
o P
—

@d g g lmE

@23 8 i1mE

path::text

SCHEMA: staging_ schema

COMMIT:

MINIMAL INTERVAL: 200
CONSISTENCY: at-least

PROPERTIES:

eof.when.idle:

Tanzu Greenplum Options (Version 2-Focused)

1500

Tanzu Greenplum Streaming Server

You identify the Tanzu Greenplum connection options via the DATABASE, USER, PASSWORD, HOST, and PORT

parameters.

The vErsTON parameter identifies the version of the GPSS YAML configuration file. You must specify

version 2 or version v3.

RABBITMQ:INPUT Options

Specify the RabbitMQ server, virtual host, and queue or stream of interest using the source block.

The paTa block that you provide must specify the coruvns and FORMAT parameters. The DATA : COLUMNS

block includes the name and type of each data element in the RabbitMQ message. The default source-to-
target data mapping behaviour of GPSS is to match a column name as defined in coL.uMNs : NAME with a

column name in the target Tanzu Greenplum OUTPUT : TABLE:

¢ You must identify the RabbitMQ data elements in the order in which they appear in the RabbitMQ

message.

¢ You may specify navE: IGNORED to omit a RabbitMQ message value data element from the

load operation.

156

Tanzu Greenplum Streaming Server

¢ You must provide the same name for each non-ignored RabbitMQ data element and its associated
Tanzu Greenplum table column.

¢ You must specify an equivalent data type for each non-ignored RabbitMQ data element and its
associated Tanzu Greenplum table column.

The paTa:rForMAT keyword identifies the format of the RabbitMQ message value. GPSS supports comma-
delimited text format (csv) and data that is separated by a configurable delimiter (delimited). GPSS also
supports binary (binary), single object or single record per line JSON/JSONB (5son or jsonl), and custom
(custom) format value data.

When you provide a META block, you must specify a single JSON-type cor.umns and the FORMAT: §son.
The available RabbitMQ meta data properties for a streaming source include:

e stream (text) - the RabbitMQ stream name

e offset (bigint) - the message offset
The available RabbitMQ meta data properties for a queue source include:

e queue (text) - the RabbitMQ queue name

¢ messageId (text) - the message identifier

e correlationId (text) - the correlation identifier

e timestamp (bitint) - the time that the message was added to the RabbitMQ queue

The FTLTER parameter identifies a filter to apply to the RabbitMQ input messages before the data is loaded
into Tanzu Greenplum. If the filter evaluates to true, GPSS loads the message. The message is dropped if
the filter evaluates to ralse. The filter string must be a valid SQL conditional expression and may reference
one or more DATA column names.

The ErRrROR LIMIT parameter identifies the number of errors or the error percentage threshold after which
GPSS should exit the load operation. The default ERROR LIMIT is zero; the load operation is stopped when
the first error is encountered.

RABBITMQ:OUTPUT Options

ﬁ You must specify only one of the ouTpuT or ouTrUTS blocks.

You identify the target Tanzu Greenplum schema name and table name via the RABRITMQ: OUTPUT: SCHEMA
and TaBLE parameters, or the multiple target database schema and table names via the
RABBITMQ:OUTPUTS. You must pre-create the Tanzu Greenplum table before you attempt to load RabbitMQ
data.

The default load mode is to insert RabbitMQ data into the Tanzu Greenplum table. GPSS also supports
updating and merging RabbitMQ message data into a Greenplum table. You specify the load MopE, the
MATCH COLUMNS and UPDATE COLUMNS, and any UPDATE CONDITIONS that must be met to merge or update
the data. In MERGE MODE, you can also specify orDER corLuMns to filter out duplicates and a

DELETE CONDITION.

157

Tanzu Greenplum Streaming Server

You can override the default mapping of the TnPUT DATA: cOLUMNS by specifying a MAPPING block in which
you identify the association between a specific column in the target Tanzu Greenplum table and a
RabbitMQ message value data element.

ﬁ When you specify a MAPPING block, ensure that you provide entries for all RabbitMQ data
elements of interest - GPSS does not automatically match column names when you
provide a MAPPING.

Loading to Multiple Tanzu Greenplum Tables

ﬁ (version 2) You must specify only one of the ouTrpuT or cuTpUTs blocks.

If you want to load from RabbitMQ to multiple Tanzu Greenplum tables, you provide an OUTPUTS : TABLE
(version 2) or targets:gpdb:tables:table (version 3) block for each table, and specify the properties that
identify the data targeted to each.

About the Merge Load Mode

MERGE mode is similar to an uprsERT operation; GPSS may insert new rows in the database, or may update
an existing database row that satisfies match and update conditions. GPSS deletes rows in MERGE mode
when the data satisfies an optional bELETE conDITION that you specify.

GPSS stages a merge operation in a temporary table, generating the SQL to populate the temp table from
the set of ouTpuT configuration properties that you provide.

GPSS uses the following algorithm for MERGE mode processing:
1. Create a temporary table like the target table.

2. Generate the SQL to insert the source data into the temporary table.
1. Add the MAPPINGS.

2. Addthe FILTER.
3. UsewmarcH corumns and OrRDER COLUMNS to filter out duplicates.

3. Update the target table from rows in the temporary table that satisfy MaTcH corLumns,
UPDATE COLUMNS, and UPDATE CONDITION.

4. Insert non-matching rows into the target table.
5. Delete rows in the target table that satisfy maTcH corumns and the DELETE CONDITION.

6. Truncate the temporary table.

Other Options

The RABBRITMO: METADATA : SCHEMA parameter specifies the name of the Tanzu Greenplum schema in which
GPSS creates external tables.

158

Tanzu Greenplum Streaming Server

GPSS commits RabbitMQ data to the Tanzu Greenplum table at the row and/or time intervals that you
specify in the RAaBBITMO: COMMIT: MAX ROW and/or MINIMAL INTERVAL parameters. If you do not specify
these properties, GPSS commits data at the default MminIMAL INTERVAL, 5000ms.

Specify a RaBRITMO: PROPERTIES block to set RabbitMQ configuration properties. GPSS sends the property
names and values to RabbitMQ when it instantiates a consumer for the load operation.

About the JSON Format and Column Type

When you specify FORMAT: json OF FORMAT: jsonl, valid coLumn: TYPES for the data include json or
jsonb. You can also specify the new GPSS gp jsonb or gp_json column types.

e gp jsonb is an enhanced JSONB type that adds support for \u escape sequences and unicode.
For example, gp_jsonb can escape \ubD8B and \u0000 as text format, but §sonb treats these
characters as illegal.

e gp jsonis an enhanced JSON type that can tolerate certain illegal unicode sequences. For
example, gp_json automatically escapes incorrect surrogate pairs and processes \u0000 as
\\u0000. Note that unicode escape values cannot be used for code point values above 007F when
the server encoding is not UTFs.

You can use the gp_jsonb and gp_json data types as follows:
¢ As the corumy: TYPE when the target Tanzu Greenplum table column type is §son or jsonb.

¢ In awmMaPPING when the target Tanzu Greenplum column is text or varchar. For example:

EXPRESSION: (j->>'a')::text

¢ InamMaPPING when FORMAT: avro and the target Tanzu Greenplum column is json or jsonb. For
example:

EXPRESSION: j::gp_jsonb
or
EXPRESSION: j::gp_Jjson

e InawMaPPING When FORMAT: avro and the target Tanzu Greenplum column is text or varchar. For

example:
EXPRESSION: (j::gp_Jsonb->>'a')::text
or
EXPRESSION: (j::gp_Json->>'a')::text
ﬁ The gp_jsonb and gp_json data types are defined in an extension named dataflow. You

must CREATE EXTENSTION dataflow; in each database in which you choose to use these
data types.

159

Tanzu Greenplum Streaming Server

Preserving lll-Formed JSON Escape Sequences

GPSS exposes a configuration parameter that you can use with the gp jsonb and gp_json types. The
name of this parameter is gpss.json preserve 111 formed prefix. When set, GPSS does not return an
error when it encounters an ill-formed JSON escape sequence with these types, but instead prepends it with
the prefix that you specify.

For example, if gpss.json preserve ill formed prefix is set to the string "##" as follows:

SET gpss.json preserve ill formed prefix = "##";

and GPSS encounters an ill-formed JSON sequence such as the orphaned low surrogate \ude04x, GPSS
writes the data as ##\ude04x instead.

About Transforming and Mapping RabbitMQ Input Data

You can define a MAPPING between the RabbitMQ input data (paTa: cornumns and META : coLUMNS) and the
columns in the target Tanzu Greenplum table. Defining a mapping may be useful when you have a multi-
field input column (such as a JSON-type column), and you want to assign individual components of the
input field to specific columns in the target table.

You might also use a MAPPING to assign a value expression to a target table column. The expression must
be one that you could specify in the seLECT list of a query, and can include a constant value, a column
reference, an operator invocation, a built-in or user-defined function call, and so forth.

Creating the Greenplum Table

You must pre-create the Greenplum table before you load RabbitMQ data into Tanzu Greenplum. You use
the rRaBBITMO: OUTPUT: SCHEMA and TABLE load configuration file parameters to identify the schema and
table names.

The target Greenplum table definition must include each column that GPSS will load into the table. The
table definition may include additional columns; GPSS ignores these columns, and loads no data into them.

The name and data type that you specify for a column of the target Tanzu Greenplum table must match the
name and data type of the related, non-ignored RabbitMQ message element. If you have defined a column
mapping, the name of the Tanzu Greenplum column must match the target column name that you specified
for the mapping, and the type must match the target column type or expression that you define.

The creaTE TABLE command for the target Tanzu Greenplum table receiving the RabbitMQ message data
defined in the 1oadcfgrmg2.yaml file presented in the Constructing the rabbitmq.yaml Configuration File
section follows:

testdb=# CREATE TABLE public.tbl int text column(cl int8, c2 int8, path text);

About RabbitMQ Stream Offsets, Message Retention, and Loading

ﬁ This topic applies only when reading from a RabbitMQ stream.

160

Tanzu Greenplum Streaming Server

RabbitMQ assigns each record/message within a stream a unique sequential id number. This id is referred
to as an offset. GPSS retains, for each gpsscli load invocation specifying the same RabbitMQ stream
and Tanzu Greenplum table names, the last offset consumed by the load operation. Refer to Understanding
RabbitMQ Message Offset Management for more detailed information about how GPSS manages
RabbitMQ message offsets.

gpsscli load returns an error if its recorded offset for the RabbitMQ stream and Tanzu Greenplum table
combination is behind that of the current earliest RabbitMQ message offset for the topic, or when the
earliest and latest offsets do not match.

When you receive one of these messages, you can choose to:

¢ Resume the load operation from the earliest available message published to the stream by
specifying the --force-reset-earliest option to gpsscli load:

$ gpsscli load --force-reset-earliest loadcfg2.yaml

¢ Load only new messages published to the RabbitMQ stream, by specifying the
--force-reset-latest option with the command:

$ gpsscli load --force-reset-latest loadcfg2.yaml

¢ Load messages published since a specific timestamp (milliseconds since epoch), by specifying the
--force-reset-timestamp Option to gpsscli load:

$ gpsscli load --force-reset-timestamp 1571066212000 loadcfg2.yaml

ﬁ Specifying the --force-reset-<xxx> options when loading data may result in missing or
duplicate messages. Use of these options outside of the offset mismatch scenario is
discouraged.

Alteratively, you can provide the FALLBACK OPTION (version 2) or fallback option (version 3) property in
the load configuration file to instruct GPSS to automatically read from the specified offset when it detects a
mismatch.

Understanding RabbitMQ Message Offset Management

As a RabbitMQ consumer, GPSS manages the progress of each load operation using RabbitMQ's broker-
based offset management. This management involves identifying how, when (before commit, after commit,
or never), and where (history table, broker, both, nowhere) the offset is stored, and is directed by a
combination of RabbitMQ client and GPSS load configuration properties.

RabbitMQ Properties

When loading from a RabbitMQ queue or stream, GPSS uses a default consumer.name of
gpss_rabbitmg consumer <job id>. You can set the consumer name by specifying this RabbitMQ client
property in the PROPERTIES (version 2) or properties (version 3 (beta)) load configuration file block. For
example:

161

Tanzu Greenplum Streaming Server

PROPERTIES:

consumer.name: my rmg consumer

When loading from a RabbitMQ queue, you may also choose to set the consumer.exclusive and
gos.prefetch.count client properties, which specify the number of queue consumers and prefetch limits per
consumer. GPSS sets the consumer.exclusive property to false by default.

GPSS Properties

GPSS uses the consISTENCY (version 2) or consistency (version 3) load configuration file property setting
to govern how it manages offsets.

GPSS supports the following consTsTENCY settings for RabbitMQ:

CONSISTENCY: { strong | at-least | at-most | none }

ﬁ GPSS supports strong consistency for RabbitMQ streams only.

Summary

The following table summarizes the offset commit behaviour for load jobs for a GPSS RabbitMQ consumer:

Consistency Value Behaviour

strong (available for GPSS stores offsets in a history table.
RabbitMQ streams only)

at-least [or empty] GPSS stores in the offset in the RabbitMQ broker before commit. Note that this could result in
duplicate data written to VMware Tanzu Greenplum when the connection to RabbitMQ closes after
GPSS writes, but before it sends the response.

at-most GPSS stores the offset in the RabbitMQ broker after commit.

none GPSS does not store offsets anywhere.

162

https://www.rabbitmq.com/consumer-prefetch.html

Tanzu Greenplum Streaming Server

Unloading Data from Greenplum

VMware Tanzu Greenplum streaming server allows you to unload data from VMware Greenplum, which is
more efficient, easy to use and easy to expand, thanks to the use of a YAML configuration file. Tanzu
Greenplum streaming server provides a framework to support multiple jobs, using the gpfdist protocol to
connect to Greenplum, a multi-thread architecture, and other features that are natively supported with the
YAML configuration file such as schedulling, configuring a task, and setting up alerts for jobs.

This topic describes how to unload data from VMware Greenplum using Tanzu Greenplum streaming server.

¢ Unloading File Data from Greenplum

Unloading File Data from VMware Tanzu Greenplum
You can use Tanzu Greenplum streaming server to unload data from your Tanzu Greenplum to a file on the
host where the Tanzu Greenplum streaming server is running. This method supports the following features:

¢ Specify multiple queries to retrieve from the database, so the unloaded data is a result of the union
all of all the queries.

¢ Specify one or more table columns, apply filters, and create mapping of the columns.
* Specify delimited columns, quote, newline mark, and header for the target files.

¢ Specify multiple targets within the Tanzu Greenplum streaming server host, so more than one file
gets created.

* Makes available other configuration yaml file features available such as schedule, task, alerts.

Unload Procedure

Perform the following tasks when you use the Tanzu Greenplum streaming server to unload data from
Tanzu Greenplum to a file:

1. Ensure that you meet the Prerequisites.
Decide on the format of the target data

Start the Tanzu Greenplum Streaming Server.

2

3

4. Prepare the Data to Unload.

5. Construct the unload configuration file.
6

Use the gpsscli Client Command to Unload the Data.

Prerequisites

Before using the gpssc1i utilities to unload data from Tanzu Greenplum to a file, ensure that:

163

Tanzu Greenplum Streaming Server

¢ Your systems meet the Prerequisites documented for Tanzu Greenplum Streaming Server.

About Supported Data Formats
The Tanzu Greenplum streaming server supports unloading to files in the following formats:

Format Description

csv Comma-delimited text format data. Specify the csv format to create an output file which is comma-delimited text and
conforms to RFC 4180. The file may not contain line ending characters (CR and LF).

json JSON format data. Specify the json format to create an output file which is in JSON format. GPSS can write JSON
data as a single object or write a single JSON record per line. You must define a mapping if you want GPSS to write
the data into specific columns in the output file.

Start the Tanzu Greenplum Streaming Server

Start an instance of the Tanzu Greenplum streaming server on the local host using the gpss utility. By
default, it uses port 5000 in localhost, and gpfdist uses the port 8080.

$ gpss

You may provide the name of the json configuration file that defines the properties of the GPSS and
gpfdist service instances. For example:

$ gpss --config gpss.json

Where the gpss. json configuration file contains the following:

"ListenAddress": {
"Host": ",
"Port": 5019

}I
"Gpfdist": {

"Host": "',
"Port": 8319,
"ReuseTables": false

Prepare the Data to Unload

You may need to locate and prepare the source tables where you plan to unload the data from. The
following example creates three tables, and inserts 1000000 lines into these tables.

CREATE TABLE test orders(id int, item text, price text) DISTRIBUTED BY (id);
INSERT INTO test orders SELECT generate series(1,1000000), 'bag', 'S$100';

CREATE TABLE test orders3(id int, item text, price text) DISTRIBUTED BY (id);
INSERT INTO test orders3 SELECT * FROM test orders;

CREATE TABLE test ordersd4(id int, item text, price text) DISTRIBUTED BY (id);
INSERT INTO test orders4 SELECT * FROM test orders;

164

https://tools.ietf.org/html/rfc4180

Tanzu Greenplum Streaming Server

Construct the unload configuration file

You configure a data unload operation from Greenplum to a file output via a YAML-formatted configuration
file. This configuration file includes parameters that identify the source tables or queries, and information
about the Tanzu Greenplum connection and target file location.

ﬁ The target url must point to a location within the same host where the Tanzu Greenplum
streaming server is running. It must not point to a remote hostname or IP address. If you
need to unload data from Tanzu Greenplum to a remote url, start Tanzu Greenplum
streaming server on the remote host in order to unload the files from the database into this
host.

The Tanzu Greenplum streaming server only supports version 3 of the YAML configuration file when you
unload data from Greenplum into a file or command output. Refer to the file-unload-v3.yaml reference page
for configuration file format and the configuration properties supported.

The following is a sample version 3 file unload YAML configuration file named unload.yaml:

version: v3

sources:
- gpdb:
host: localhost
port: 6000

user: gpadmin
database: testdb
work schema: public
tables:
- table: test_orders
schema: public
filter: id > 10000
mapping:
- id: id
- item: item
- price: price
- segment: gp segment id as segment
queries:
- select id, item, price, gp_segment id as segment from test orders3 where id
> 10000
- select id, item, price, gp_segment id as segment from test orders4 where id
> 10000
targets:
- file:
url: /home/gpadmin/path to unload/unloadl.csv
content:
csv:
columns:
- name: id
header: ID
- name: item
header: ITEM
- name: price
header: PRICE
- name: segment
header: SEGMENT

165

Tanzu Greenplum Streaming Server

delimiter: ","
quote: "'"
newline: LF
header: true
- file:
url: /home/gpadmin/path to unload/unloadl.json
content:
json:
columns:
- name: id
key: "ID"
- name: item
key: "ITEM"
- name: price
key: "PRICE"
- name: segment
key: "SEGMENT"
is_jsonl: true

new_line: "\n"

The configuration file above unloads data from the specified queries (from tables test orders3 and
test ordersd4) and the specified columns from the table test orders to two different target files: a text
file named unloadl.csv and a json file named unloadl . son.

The fields name under the file section must match the table columns, and the columns specified by the

queries.

Note that for queries, if you specify a system column name as part of the query syntax, you must specify
it as an ordinary column name, otherwise it will error out. For example, if you specify the following query:

queries:

- select id, item, price, gp_segment id from test orders2 where id > 10000
Because gp _segment id is a system column, this query will error out. Instead, specify the following query:

queries:

- select id, item, price, gp_segment id as segment from test orders2 where id > 1
0000

The following sample YAML configuration file named unload add task.yaml tunes the performace by
setting different batch sizes:

version: v3
sources:
- gpdb:
host: localhost
port: 6000
user: gpadmin
database: testdb
work schema: public
tables:
- table: test orders
schema: public
filter: id > 10000
mapping:
- id: id

166

Tanzu Greenplum Streaming Server

- item: item
- price: price
- segment: gp segment id as segment
task:
batch size:
max_count: 100000
interval ms: 1000
targets:
- file:
url: /home/gpadmin/path to unload/unloadl.csv
content:
csv:
columns:
- name: id
header: ID
- name: item
header: ITEM
- name: price
header: PRICE
- name: segment
header: SEGMENT
delimiter: ","
quote: "'"
newline: LF
header: true
- file:
url: /home/gpadmin/path to unload/unloadl.json
content:
json:
columns:
- name: id
key: "ID"
- name: item
key: "ITEM"
- name: price
key: "PRICE"
- name: segment
key: "SEGMENT"
is_jsonl: true

new line: "\n"

The options max _count and interval ms under the section batch size tune the batch size to unload into
the files. Each time Tanzu Greenplum streaming server fetches data from Greenplum, the data is stored in
the GPSS memory, and GPSS flushes the data onto the files using the batch size set by the configuration
file. max_count indicates the number of lines to fetch before flushing to disk. interval ms represents the
amount of time (in ms) since the last flush to the file. The larger max count and interval ms are, the
larger the amount of data flushed onto disk at a time, which increases the unload performance.

The option schedule controls the frequency and interval of restarting the unload jobs.

The option alert manages notifications when a job is stopped. You may use this option to count the
number of lines unloaded or record any other statistics about the job.

The fields encoding, prepare statement, and teardown statement are not supported.

See file-unload-v3.yaml for more details.

Use the gpsscli Client Command to Unload the Data

167

Tanzu Greenplum Streaming Server

Run the gpsscli 1oad client command to unload the data from VMware Greenplum into a file.

$ gpsscli load unload.yaml

The data is added to the files defined by the field ur1 in an append mode. If there is already existing data in
the file, the unload job keeps the old data, and appends all the new data to the file. If there is no such file in
the target URL, GPSS will create the new files.

Other Considerations

If the table is too large to be unloaded into one file, you can create multiple jobs, each specifying different
values for the field filter, in order to split big files into smaller pieces. For example, the first job specifies
the filter id< 10000, the second one specifies the filter id >= 10000 and the last one specifies id <20000.
You can submit different jobs and run them in parallel.

Incremental data unloading is not supported, only full data unloading. However, using queries, you can split
large tables into partitions, using the date as the partition strategy. In this way, GPSS can separately unload
the most recent data into the files.

Since Tanzu Greenplum streaming server uses the gpfdist protocol to unload the data, the data is
unloaded directly from the segments to the files in batches, hence it is not possible to guarantee the order
of the data among different segments.

168

Utility Reference

Tanzu Greenplum Streaming Server

The VMware Tanzu Greenplum streaming server includes the following utility and configuration reference

pages:

gpss
gpss.json

gpsscli

gpsscli list
gpsscli load
gpsscli progress
gpsscli remove
gpsscli shadow
gpsscli start
gpsscli status
gpsscli stop
gpsscli submit
gpsscli wait
gpsscli.yaml
gpsscli-v3.yaml
gpkafka

gpkafka load
gpkafka-v2.yaml
gpkafka-v3.yaml
gpkafka.yaml
kafkacat
filesource-v2.yaml
filesource-v3.yaml
rabbitmg-v2.yaml

rabbitmg-v3.yaml

s3source-v3.yaml (Beta)

169

https://github.com/edenhill/kafkacat

Tanzu Greenplum Streaming Server

gpss

Start an instance of a VMware Tanzu Greenplum streaming server.

Synopsis
gpss [-c | --config <config.json>]
[--debug-port <portnum>] [--clear-job-store]
[--color] [--csv-log]
[-1 | --log-dir <directory>] [--verbose]
gpss {-h | --help}
gpss --version
Description

The gpss utility starts an instance of the Tanzu Greenplum streaming server (GPSS). When you run the
command, you optionally provide a JSON-formatted configuration file that defines run properties such as
the GPSS server listen address, gpfdist host and port number, and encryption certificate and key files.
You can also specify the directory to which GPSS writes its log files, as well as a job store.

When started, gpss waits indefinitely for client job requests. A single GPSS instance can service requests
from multiple clients. Refer to the gpsscli reference page for more information about client job commands.

ﬁ gpss keeps track of the status of each client job in memory. When you stop a GPSS
server instance that did not specify a Jobstore setting in its server configuration file, you
lose all registered jobs. You must re-submit any previously-submitted jobs that you require
after you restart the server instance. gpss will resume a job from the last load offset.

Options

-c | --config config.json

The JSON-formatted configuration file that defines the run properties of a GPSS service instance. If
the filename provided is not an absolute path, GPSS assumes that the file system location is
relative to the current working directory. Refer to gpss.json for the format and content of the
properties that you specify in this file.

If you do not provide a GPSS configuration file, VMware Tanzu Greenplum starts gpss on default
port 5000 on host 127.0.0.1, starts gpfdist on default port 8080 on the local host address
identified by the output of the hostname command, and does not use encryption.

--debug-port porthnum

When you specify this option, gpss starts a debug server at the port identified by portnum on the
local host (127.0.0.1); additional debug information including the call stack and performance
statistics is available from the server.

170

Tanzu Greenplum Streaming Server

ﬁ A debug server port number that you specify via the --debug-port option to this
command takes precedence over a bebugPort that you may have configured for the
gpss server instance in the gpss. json configuration file.

--clear-job-store
When you specify this option, gpss clears all jobs from the Jobstore directory specified in the
config.json server configuration file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

-l | --log-dir directory

Specify the directory to which GPSS writes log files. GPSS must have write permission to the
directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpss log files to the $HOME/gpAdminLogs directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the

operation.
-h | —-help

Show command help, and then exit.
--version

Show command version, and then exit.

Examples

Start a Tanzu Greenplum streaming server instance in the background, specifying a log directory of
/home/gpadmin/logs.gpss, and using the run properties defined in a configuration file named
gpsscfg.json located in the current directory. Also start a GPSS debug server on port number 8915:

$ gpss --debug-port 8915 --log-dir /home/gpadmin/logs.gpss --config gpsscfg.json &
View the debug information available from the GPSS debug server:

$ curl http://127.0.0.1:8915/debug/pprof/

See Also

gpss.json, gpsscli

gpss.json

7

VMware Tanzu Greenplum streaming server configuration file.

Synopsis

"ListenAddress": {
"Host": "<gpss_host>",
"Port": <gpss_portnum> [,

"DebugPort": <gpss_debug portnum>] [,

"Certificate": {

"CertFile": "<certfile path>",
"KeyFile": "<keyfile path>",
"CAFile": "<CAfile path>",
"MinTLSVersion": "<min_version>"

H
}I
"Gpfdist": {

"Host": "<gpfdist host>",
"Port": <gpfdist portnum> [,
"ReuseTables": <bool value>][,
"Certificate": {
"CertFile": "<certfile path>",
"KeyFile": "<keyfile path>",
"CAFile": "<CAfile path>",
"MinTLSVersion": "<min version>",

"DBClientShared": <bool value>

P10,
"BindAddress": <bind_ addr>]

oy

"Shadow": {
"Key": "<passwd_shadow_key>",
1
"Authentication": {
"Username": "<client auth username>",
"Password": "SHADOW:<shadowed passwd_string>"
10
"JobStore": {
"File": {
"Directory": "<jobstore dir>"

|
"Logging": {
"BackendLevel": "<level>",
"FrontendLevel": "<level>",
"SplitByJdob": "<level>",
"Rotate": "<policy period>"
I
"Monitor": {
"Prometheus": ({
"Listening": "<prom_ addr>:<prom port>"

b0

"KeepAlive": {
"MaxConnectionIdle": "<duration>",
"Time": "<duration>",
"Timeout": "<duration>",
"MinTime": "<duration>",

"PermitWithoutStream": <bool value>

Tanzu Greenplum Streaming Server

172

Tanzu Greenplum Streaming Server

Description

You specify runtime configuration properties for a gpss service instance in a JSON-formatted configuration
file. Run properties for GPSS include gpss and gpfdist service hosts, addresses, port numbers, and
optional encryption certificates and key files. You can specify a directory in which GPSS stores job status
information, addresses, port numbers, and optional encryption certificates and key files.

You can configure the log level of messages that GPSS commands write to stdout and to log files. Other
logging-related properties allow you to configure a log rotation period and separate log files per job. You can
also configure client-to-server authentication for GPSS. You can also specify a shadow key that GPSS
uses to encode and decode the VMware Tanzu Greenplum and client authentication passwords.

This reference page uses the name gpss. json to refer to this file; you may choose your own name for the
file.

Keywords and Values

GPSS Listenaddress Options

Host: gpss_host
The host name or IP address on which GPSS listens for client connections. The default host is
127.0.0.1.
Port: gpss_portnum
The port number on which the gpss service instance listens. The default port number is 5000.
DebugPort: gpss_debug_porthum
The port number on which gpss starts a debug server on the local host (127.0.0.1). When you
specify this configuration option, gpss makes debug information including the call stack and
performance statistics available from the debug server.
Certificates:

When you specify certificates, GPSS uses the SSL certificates to authenticate both the client
connection and the connection to Tanzu Greenplum.

CertFile: certfile_path
File system path to the server certificate.

KeyFile: keyfile_path
File system path to the server key file.

CAFile: CAfile_path
File system path to the Certificate Authority file. The CAfile_path must contain the entire
Certificate Authority chain.

MinTLSVersion: min_version
The minimum transport layer security (TLS) version that GPSS requests on the connection.
The default value is 1.0. GPSS supports minimum TLS versions of 1.0, 1.1, 1.2, and 1.3.

Gpfdist Options

173

Tanzu Greenplum Streaming Server

GPSS implements the gpfdist protocol. The gpss. json file exposes configuration options that you can
use to identify the service location and bind options.

Host: gpfdist_host
The gpfdist service host name or IP address that GPSS sets in the external table LocaTTON
clause. This hostname or IP address must be reachable from each Tanzu Greenplum segment host.
The default value is the fully qualified distinguished name of the host on which GPSS is running.
Port: gpfdist_portnum
The gpfdist service port number. The default port number is 8080.
ReuseTables: bool_value

A boolean that identifies whether or not GPSS should reuse an external table when the job
associated with a load operation is restarted. The default value is true, reuse the external table.
When you reuse external tables, GPSS generates the external table name using a hash of various
server and load configuration property values.

If you choose not to reuse external tables, GPSS drops the external table associated with a load
operation (if one exists) and creates a new external table when you (re)start the job. If you do not
reuse external tables, GPSS generates the external table name using the job name.

Certificates:

When you specify gpfdist certificates, GPSS uses the SSL certificates and the gpfdists protocol
to transfer encrypted data between itself and Tanzu Greenplum.

CertFile: certfile_path
File system path to the server certificate.
KeyFile: keyfile_path
File system path to the server key file.
CAFile: CAfile_path
File system path to the Certificate Authority file. The CAfile_path must contain the entire
Certificate Authority chain.
MinTLSVersion: min_version
The minimum transport layer security (TLS) version that GPSS requests on the connection.
The default value is 1.0. GPSS supports minimum TLS versions of 1.0, 1.1, 1.2, and 1.3.
DBClientShared: bool_value
Determines whether GPSS shares this Gpfdist certificate. The default value is false, GPSS
does not share the cert. When true, GPSS presents the Gpfdist certificate as the client
certificate for the control channel connection to Tanzu Greenplum. This configuration may be
desirable if you use pgbouncer to manage connections to Tanzu Greenplum.

BindAddress: bind_addr
The address from which GPSS listens for connections from Tanzu Greenplum segments. Set
bind_addr to an IP address that is reachable from every segment host by resolving the gpfdist_host
configuration value, or set it to 0.0.0.0 to listen for connections from any host. The default bind
address is 0.0.0.0.

Shadow Option

The encode/decode key for the Tanzu Greenplum password.

Shadow: passwd_shadow_key

174

Tanzu Greenplum Streaming Server

The key that GPSS uses to encode and decode shadow password strings. You can specify a
shadowed password for the Tanzu Greenplum user name. You can also specify a shadowed
password for GPSS client to server authentication. Keep this key secret.

Authentication Options

The user name and password that GPSS uses to authenticate the client program (gpssc1i) with this GPSS
server.

Username: client_auth_username

The user name with which the GPSS server instance authenticates a client.
SHADOW:shadowed_passwd_string

The shadowed password with which the GPSS server instance authenticates a client.

JobStore Option

The GPSS job information store.

File: Directory: jobstore_dir
The file system directory on the local host in which GPSS maintains current job information and
status.

Logging Options

The back-end (log file) and front-end (command line output) logging levels for GPSS commands. GPSS
supports the following log levels (from most to least severe): fatal, error, warn Of warning, info, and

debug.

BackendLevel: level
The logging level for messages that gpss, gpsscli, and gpkafka write to log files. The default back-
end logging level is debug.

FrontendLevel: level
The logging level for messages that gpss, gpsscli, and gpkafka write to stdout. The default front-
end logging level is info.

SplitByJob: level
Identifies if and how GPSS manages server log files. By default (no spitByJob specified), GPSS
creates a log file per server invocation. The only valid level is startTime. When StartTime is
specified, GPSS creates per-run server log files, and creates a new log file each time a job is started
or loaded.
You may specify neither, or only one of splitByJob Or Rotate.

Rotate: policy_period
The time period that governs the GPSS server log file rotation policy. Valid policy period values are
daily and hourly. By default (no rotate specified), GPSS does not rotate a server log file on its
own.
You may specify neither, or only one of splitByJob Or Rotate.

Monitor Option

The address to which GPSS binds the Prometheus scrape target for the GPSS server instance.

Prometheus: Listening: prom_addr:prom_port

175

Tanzu Greenplum Streaming Server

The host name or IP address and port number from which the GPSS service instance allows
Prometheus to pull the server's metrics.

KeepAlive Options

These properties control the gRPC connection between the GPSS client and GPSS server. Refer to the
gRPC keepalive package documentation for more information about these properties and their default
values.

MaxConnectionldle: duration
The amount of time after which an idle connection is closed. The default value is infinity.

Time: duration
The amount of time of no activity after which a server pings the client to see if the transport is still
alive. The default value is 2nh.

Timeout: duration
The amount of time of no activity after a keepalive ping that prompts closure of the connection. The
default value is 20s.

MinTime: duration
The mininum amount of time a client should wait before sending a keepalive ping. The default value
is 5m.

PermitWithoutStream: bool_value
Determines if the server allows keepalive pings when there are no active streams. If false, the
server will close the connection when a client sends a ping with no active streams. The default value
IS false.

Notes

When you provide the --config gpss.json option to the gpssc1i shadow command, GPSS uses the
Shadow:Key specified in the file to encode the password that you specify. If you do not provide a gpss.json
file, GPSS uses a default key to encode the password. The gpsscli shadow command generates and
outputs the encoded shadow password string.

When you provide a variant of this file to the other gpssc1i subcommands via the --config
gpsscliconfig.json option, GPSS uses the information provided in the ListenAddress block of the file to
identify the GPSS server instance to which to route the request, and/or to identify the client certificates
when SSL is enabled between GPSS client and server.

When you provide the --config gpfdistconfig.json option to the gpkafka load command, GPSS uses
the information provided in the Gpfdist block of the file to specify the gpfdist protocol instance, and,
when SSL is enabled on the data channel to Tanzu Greenplum, to identify the GPSS SSL certificates.

Examples

Start a Tanzu Greenplum streaming server instance with properties as defined in a configuration file named
gpsséic.json located in the current directory:

$ gpss --config gpssdic.json

Example gpss4ic.json configuration file:

176

https://pkg.go.dev/google.golang.org/grpc/keepalive

"ListenAddress": {

}I

"Host": "™,
"Port": 5019

"Gpfdist": {

}I

"Host": "',
"Port": 8319,

"ReuseTables": false

"Shadow": {

by

"Key": "a_very secret key"

"Monitor": {

}I

"Prometheus": {
"Listening": "0.0.0.0:5001"

"JobStore": {

"File": {

"Directory": "/home/gpadmin/jobstore"

See Also

gpss, gpsscli, gpkafka load

gpsscli

Client command utility for the VMware Tanzu Greenplum streaming server.

Synopsis

gpsscli

gpsscli
gpsscli
gpsscli
gpsscli
gpsscli
gpsscli
gpsscli
gpsscli
gpsscli
gpsscli
gpsscli

gpsscli

gpsscli

<subcommand> [<options>]

convert
dryrun
list
load
progress
remove
start
status
stop
submit

wait

{help | -h | --help}

{-v | —--version}

Description

Tanzu Greenplum Streaming Server

177

Tanzu Greenplum Streaming Server

The Tanzu Greenplum streaming server (GPSS) includes the gpssc1i client command utility. gpsscli

provides subcommands to manage Tanzu Greenplum streaming server load jobs and to view job status and

progress:
Subcommand
convert
dryrun
help
list
load
progress
remove
start
status
stop
submit

wait

Options

Description

Convert a version 1 or 2 load configuration file to version 3 format
Perform a trial load without writing to VMware Tanzu Greenplum
Display command help

List jobs and their status

Run one or more single-command load

Show job progress

Remove one or more jobs

Start one or more jobs

Show job status

Stop one or more jobs

Submit one or more jobs

Wait for a job to stop

--config <gpsscliconfig.json>

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

K

--color

gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the Gpfdist block of the file.

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivate by default.

GPSS ignores the --color option if you also specify —--csv-1og.

--csv-log

Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout

using spaces between fields for a more human-readable format.

--gpss—host <host>

178

Tanzu Greenplum Streaming Server

The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

-—gpss—-port <port>
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpsscli
subcommand.

-d | —--daemon
Run gpss as a daemon. All log messages will be printed on the backend log instead of on the screen
log. The daemon will continue running until you manually stop the process.

-U | --username <client auth username>
The user name with which the GPSS server instance authenticates the client.

-P | --password <client auth passwd>
The password with which the GPSS server instance authenticates the client.

-1 | --log-dir <directory>

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME /gpAdminTLogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | --help
Show command utility help, and then exit.

-v | —--version
Show the versions of gpsscli and the gpss server, and then exit. You may need to also specify the
--gpss-host and/or --gpss-port options to identify the server.

See Also

gpsscli convert, gpsscli dryrun, gpsscli list, gpsscli load, gpsscli progress, gpsscli remove, gpsscli start,
gpsscli status, gpsscli stop, gpsscli submit, gpsscli wait

gpsscli convert
Convert a version 1 or version 2 load configuration file to version 3 format.
Synopsis

gpsscli convert <loadcfg.yaml>
[-1 | --edit-in-place]

gpsscli convert {-h | --help}

179

Tanzu Greenplum Streaming Server

Description
The gpsscli convert command converts a version 1 or version 2 load configuration file to version 3
format.

By default, the command writes the converted file to stdout. If you specify the -i or -—edit-in-place
option, the command overwrites the input loadcfg.yaml with the new version 3 format.

n gpsscli convert does not currently support converting a load configuration file in which
properties are set using template parameters.

Options

loadcfg.yaml
The load configuration file.

-i | —edit-in-place
Instead of writing to stdout, edit the file in place, overwriting the input file with the new version 3
format.

-h | --help

Show command utility help, and then exit.

Examples
Convert the version 2 load configuration file named et14ob.yaml to version 3 format, editting the file in
place:

$ gpsscli convert --edit-in-place etljob.yaml

convert file in place successfully

See Also

gpsscli.yaml, gpsscli-v3.yaml

gpsscli dryrun

Perform a trial load without writing to VMware Tanzu Greenplum.

Synopsis
gpsscli dryrun <loadcfgv3.yaml> [--name <job name>]
[-p | —-property <template_ var=value>]

--include-error-process]

--config <gpsscliconfig.json>]

[
[
[
[

--gpss-host <host>] [--gpss-port <port>]
--no-check-cal] [-1 | --log-dir <directory>] [--verbose]
gpsscli dryrun {-h | --help}

180

Tanzu Greenplum Streaming Server

Description

The gpsscli dryrun command performs a trial load of the job specified by loadcfgv3.yaml. You can use
this command to help you diagnose a failed job.

ﬁ GPSS currently supports running the gpsscli dryrun command only on Kafka, file, and
S3 jobs.

gpsscli dryrun reads data from the source and prepares for the load operation without actually inserting
the data into Tanzu Greenplum. The command also outputs the underlying SQL commands that GPSS
would run to fulfill the job.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

loadcfgv3.yaml
The version 3 load configuration file with which to perform a job trial run.
--name job_name
The name to assign to the dry run job.
-p | —property template_var=value
Substitute value for instances of the property value template {{template_var}} referenced in the
loadcfgv3.yaml load configuration file.
--include-error-process

Instructs GPSS to process errors and display error messages when save failing batch iS true.
By default, the command does not display these messages.

ﬁ gpsscli dryrun supports this option only when trialing a Kafka load configuration
file.

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the Gpfdist block of the file.

--color

181

Tanzu Greenplum Streaming Server

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

-no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpssc1i
subcommand.

-U | --username client_auth_username
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | --log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME /gpAdminTLogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | —-help
Show command utility help, and then exit.

Examples

Perform a dry run of the Kafka load job specified by the configuration file named kjobcfgv3. yaml; include
error processing in the trial run:

$ gpsscli dryrun --include-error-process kjobcfgv3.yaml

See Also

gpsscli.yaml, gpsscli-v3.yaml

gpsscli list

182

Tanzu Greenplum Streaming Server

List VMware Tanzu Greenplum streaming server jobs and status.

Synopsis

gpsscli list [--all]
[--config <gpsscliconfig.json>]
[--gpss-host <host>] [--gpss-port <port>]
[-U | --username <client auth user> -P | --password <client auth passwd>]
[--no-check-ca] [-1 | --log-dir <directory>] [--verbose]
gpsscli list {-h | --help}
Description

The gpsscli 1ist command lists the running jobs serviced by a specific Tanzu Greenplum streaming
server (GPSS) instance. You can instruct the command to list all jobs regardless of state by providing the -

-al1 flag.

gpsscli list displays the job identifier and status, as well as the VMware Tanzu Greenplum coordinator
host, port, database, schema, and table.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

--all
Show information for all jobs regardless of state.
-config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the Gpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host

183

Tanzu Greenplum Streaming Server

The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpssc1i
subcommand.

-U | --username client_auth_username
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | --log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME /gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the

operation.
-h | --help
Show command utility help, and then exit.

Examples
List all Tanzu Greenplum streaming server jobs:

$ gpsscli list --all

See Also

gpss, gpsscli submit

gpsscli load

Load data with the VMware Tanzu Greenplum streaming server.
Synopsis

gpsscli load <jobconfig.yaml> [...]
[--name <job name>]

[-f | --force] [--quit-at-eof] [--partition]

[{-—-force-reset-earliest | --force-reset-latest | --force-reset-timestamp <tstamp
>1}]

[-p | --property <template var=value>]

184

Tanzu Greenplum Streaming Server

--config <gpsscliconfig.json>]

[
[--gpss-host <host>] [--gpss-port <port>]
[-U | -X-username <client auth user> -P | --password <client auth passwd>]
[--no-check-ca] [-1 | --log-dir <directory>] [--verbose]
gpsscli load {-h | --help}
Description

The gpsscli load command initiates a load job to a specific Tanzu Greenplum streaming server (GPSS)
instance. When you run gpsscli load, the command submits, starts, and displays the progress of a
GPSS job.

You provide one or more YAML-formatted configuration files that define the job parameters when you run the
command. When you specify a single load configuration file, you may choose a name to identify the job. If
you do not provide a name, GPSS uses the base name of load configuration file as the job identifier. For
example, if you invoke this command with the load configuration file /dir/jobconfig.yaml and do not
provide the --name option, GPSS assigns the job the identifier jobconfig.

By default, gpsscli load loads all available data and then waits indefinitely for new messages to load. In
the case of user interrupt or exit, the GPSS job remains in the Running state. You must explicitly stop the
job with gpsscli stop when running in this mode.

When you provide the --quit-at-eof option to the command, the utility exits after it reads all published
data, writes the data to VMware Tanzu Greenplum, and stops the job. The GPSS job is in the Success or
Error state when the command returns.

If gpsscli load detects an offset mismatch when loading from a Kafka data source, you can choose to
resume a load operation from the earliest available data. Or, you may choose to load only new data, or data
emitted since a specific time.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

jobconfig.yaml [...]

One or more YAML-formatted configuration files that define the parameters of the job. If a filename
provided is not an absolute path, Tanzu Greenplum assumes the file system location is relative to
the current working directory.

ﬁ GPSS uses the properties in a YAML configuration file to uniquely identify a load
operation. Submit a configuration file only once. If you submit the same
configuration file more than once, GPSS will create the job, but it will eventually
error out.

--name job_name

185

Tanzu Greenplum Streaming Server

Use job_name to identify the job. If you do not provide a name, the default job identifier is the base
name of the load configuration file. Job names must be unique.

ﬁ GPSS does not support specifying a job_name when you provide more than one
jobconfig.yaml load configuration file to the command.

-f | --force

Force GPSS to reload the configuration of a running job. GPSS stops the job, updates the job with
the configuration specified in in jobconfig.yaml, and then restarts the job. If you previously named
the job, you must provide --name job\ name when you force job configuration reload with this

option.

ﬁ Do not attempt to update a configuration property that GPSS uses to uniquely
identify a job. If you change any such configuration property, GPSS creates a new
internal job and loads all available messages.

—-quit-at-eof

When you specify this option, gpsscli 1load exits after it reads all of the source data. The default
behaviour of gpsscli load is to wait indefinitely for, and then consume, new data from the source.

gpsscli load ignores job retry scHEDULE configuration settings when it is invoked with the --quit-
at-eof flag.
—force-reset-earliest

gpsscli load returns an error if its recorded offset does not match that of the data source. Re-run
gpsscli load and specify the --force-reset-earliest option to resume the load operation from
the earliest available data offset known to the data source.

ﬁ gpsscli load supports this option only when loading from a Kafka or RabbitMQ

stream data source.

ﬁ --force-reset-earliest specified on the command line takes precedence over a
FALLBACK OFFSET/fallback offset set in the jobconfig.yaml.

--force-reset-latest

gpsscli load returns an error if its recorded offset does not match that of the data source. Re-run
gpsscli load and specify the --force-reset-latest option to load only new data emitted from the

data source.

ﬁ gpsscli load supports this option only when loading from a Kafka or RabbitMQ

186

Tanzu Greenplum Streaming Server

stream data source.

ﬁ --force-reset-latest specified on the command line takes precedence over a
FALLBACK OFFSET/fallback offset setin the jobconfig.yaml.

—force-reset-timestamp tstamp

Specify the --force-reset-timestamp option to load messages published since the specified time.

tstamp must specify epoch time in milliseconds, and is bounded by the earliest message time and
the current time.

ﬁ gpsscli load supports this option only when loading from a Kafka or RabbitMQ
stream data source.

—partition

By default, GPSS outputs the Kafka job progress by batch, and displays the start and end times, the
message number and size, the number of inserted and rejected rows, and the transfer speed per
batch. When you specify the --partition option, GPSS outputs the job progress by partition, and
displays the partition identifier, the start and end times, the beginning and ending offsets, the
message size, and the transfer speed per partition.

ﬁ gpsscli load supports this option only when loading from a Kafka data source.

-p | —property template_var=value
Substitute value for instances of the property value template {{template_var}} referenced in the
jobconfig.yaml load configuration file.

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the Listenaddress
block of the gpsscliconfig.json file, and ignore the gpfdist configuration
specified in the cpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

187

Tanzu Greenplum Streaming Server

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpssc1i
subcommand.

-U | --username client_auth_username
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | --log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpssc1i client log files to the $HOME /gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | --help
Show command utility help, and then exit.

Examples

Submit a GPSS load job from Kafka named from topicl whose load parameters are defined by the
configuration file named 1oadcfg. yaml:

$ gpsscli load --name from topicl loadcfg.yaml
See Also
gpss, gpsscli.yaml, gpsscli submit, gpsscli start, gpsscli progress, gpsscli stop

gpsscli progress

Check the progress of a VMware Tanzu Greenplum streaming server job.

Synopsis

188

Tanzu Greenplum Streaming Server

gpsscli progress {<job name> | <job id>}
[--partition]

--config <gpsscliconfig.json>]

--gpss-host <host>] [--gpss-port <port>]
--no-check-ca] [-1 | --log-dir <directory>] [--verbose]

[
[
[-U | --username <client auth user> -P | --password <client auth passwd>]
[
[

--scrolling]

gpsscli progress {-h | --help}
Description
ﬁ GPSS currently supports job progress tracking only for Kafka data sources.

The gpsscli progress command displays the progress of a Kafka job submitted to a Tanzu Greenplum
streaming server (GPSS) instance. The command displays time, offset information, message size, and
transfer speed for each data load operation real-time. By default, gpsscli progress displays information
per-batch and progress updates in inline mode, similar to the top command. You can specify the --
partition option to display progress information on a per-partition basis.

gpsscli progress waits indefinitely; the command exits when the job is stopped or GPSS encounters an
error.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

job_name | job_id
The identifier of a previously-submitted GPSS job. You can specify a job name when you run
gpsscli submit, or the command returns a unique job identifier.

--partition
By default, GPSS outputs the job progress by batch, and displays the start and end times, the
message number and size, the number of inserted and rejected rows, and the transfer speed per
batch. When you specify the --partition option, GPSS outputs the job progress by partition, and
displays the partition identifier, the start and end times, the beginning and ending offsets, the
message size, and the transfer speed per partition.

-config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

n gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration

189

Tanzu Greenplum Streaming Server

specified in the cpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpsscli
subcommand.

-U | --username client_auth_usermame
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | ~log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME /gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

--scrolling
Enable scrolling display mode for batch progress. This allows you to monitor the progress of each
batch from the beginning to the end.

ﬁ This option is only available from version 1.11.3 onwards.

-h | —-help
Show command utility help, and then exit.

Examples

Display the progress of the GPSS job identified by the name nsync 121118:

190

Tanzu Greenplum Streaming Server

$ gpsscli progress nsync_ 121118

Display the per-partition progress of the GPSS job identified by the name nsync 121118:

$ gpsscli progress nsync 121118 --partition

See Also

gpss, gpsscli list, gpsscli submit

gpsscli remove

Remove one or more VMware Tanzu Greenplum streaming server jobs.
Synopsis

gpsscli remove {<job name> | <job id>}
[--all]
[-f | --force]
[--config <gpsscliconfig.json>]
[--gpss-host <host>] [--gpss-port <port>]
[
[

-U | --username <client auth user> -P | --password <client auth passwd>]
--no-check-ca] [-1 | --log-dir <directory>] [--verbose]
gpsscli remove {-h | --help}
Description

The gpsscli remove command removes a job from the job list of a specific Tanzu Greenplum streaming
server (GPSS) instance.

Specify the --a11 flag to the command to remove all stopped and errored jobs. Specify the -f | —--force
flag to instruct GPSS to forcibly stop and remove the job(s).

When you remove a job, GPSS un-registers the job and removes all job-related resources.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

job_name | job_id
The identifier of a previously-submitted GPSS job. You can specify a job name when you run
gpsscli submit, or the command returns a unique job identifier.

-all
Remove all stopped and errored jobs.

-f | --force
Forcibly stop (if running) and remove the specified job, or stop and remove all jobs when the --a11
flag is also specified.

191

Tanzu Greenplum Streaming Server

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the Gpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpssc1i
subcommand.

-U | --username client_auth_username
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | ~log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpssc1i client log files to the $HOME /gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | —-help
Show command utility help, and then exit.

192

Tanzu Greenplum Streaming Server

Examples

Remove the GPSS job identified by the name nsync 121118:

$ gpsscli remove nsync_ 121118
See Also
gpss, gpsscli list, gpsscli stop, gpsscli submit

gpsscli shadow

Generate a shadow string for a password.

Synopsis
gpsscli shadow [--config <gpss.json>]
gpsscli shadow {-h | --help}
Description

The gpsscli shadow command generates a shadowed password string for the password that you input.
You may generate a shadow password for the VMware Tanzu Greenplum user password, or for the
password that a GPSS server instance uses to authenticate a client.

If you generate a Greenplum user shadow password, you provide the output generated by the command in
the PAssWORD: property setting of your gpsscli.yaml load configuration file.

ﬁ GPSS supports shadowing the Greenplum user password only on load jobs that you
submit and manage with the gpssc1i subcommands. GPSS does not support shadowed
passwords on load jobs that you submit with gpkafka load.

If you generate a shadow password for GPSS client to server authentication, you provide the output
generated by the command in the Authentication:Password: property setting of the gpss.json GPSS
server configuration file.

GPSS uses the shadow:Key property value specified in the --config gpss.json file, or the default key, to
encode the password that you enter, and then generates and outputs the shadow password string.

gpsscli shadow generates a shadow password string of the following format:

"SHADOW:<shadow_password string>"

Options

--config gpss.json

193

Tanzu Greenplum Streaming Server

The GPSS server configuration file. When the file includes a shadow:Key setting, GPSS uses the

key to encode the password input.
-h | --help
Show command utility help, and then exit.

Examples
Generate a shadowed password string using the default key:

$ gpsscli shadow

please input your password

changemeCHANGEMEchangeme
"SHADOW:OH7TIH3676NIA4GONNN3NTIEJGMGY7R2UE2A4GYUV2EDSAESDHWA"

Generate, without the user prompt, a shadowed password string using the key specified in the file named
gpss.json located in the current working directory:

$ echo changemeCHANGEMEchangeme | gpsscli shadow --config gpss.json | tail -1
"SHADOW: ERTBKXDWLAJHUF5UOGJY34QTXIBNYPA4ULTWVHIUZIF4UYFPRIJVA"

See Also

gpss, gpss.json, gpsscli.yaml

gpsscli start

(Re)start one or more VMware Tanzu Greenplum streaming server jobs.

Synopsis

gpsscli start {<job_name> | <job_id>}

[--all] [--gquit-at-eof]

[{--force-reset-earliest | --force-reset-latest | --force-reset-timestamp <tstamp
>1]

[--skip-explain]

[--config <gpsscliconfig.json>]
[--gpss-host <host>] [--gpss-port <port>]
[

[

-U | --username <client auth user> -P | --password <client auth passwd>]
--no-check-ca] [-1 | --log-dir <directory>] [--verbose]
gpsscli start {-h | --help}

The gpsscli start command (re)starts a job submitted to a specific Tanzu Greenplum streaming server
(GPSS) instance. You identify the name of the job. You can also identify the data offset from which you
want the operation to begin.

Specify the --a11 flag to the command to (re)start all previously submitted jobs.

194

Tanzu Greenplum Streaming Server

When you start a job, you initiate the data load operation. The job transitions from the Submitted or Stopped
state to the Running state.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

job_name | job_id
The identifier of a previously-submitted GPSS job. You can specify a job name when you run
gpsscli submit, or the command returns a unique job identifier.

--all
Start all previously submitted jobs that are not currently running.

--quit-at-eof

When you specify this option, gpsscli start reads all pending data, stops the job, and then exits.
The default behaviour of gpsscli start is to start the job and then exit.

gpsscli start ignores job retry scHEDULE configuration settings when it is invoked with the --
quit-at-eof flag.
—force-reset-earliest

gpsscli start returns an error if its recorded offset does not match that of the data source. Re-run
gpsscli start and specify the --force-reset-earliest option to resume the load operation from
the earliest available data offset known to the data source.

gpsscli start supports this option only when loading from a Kafka or RabbitMQ
stream data source.

--force-reset-earliest specified on the command line takes precedence over a
FALLBACK OFFSET/fallback offset setin the jobconfig.yaml when the job was
submitted.

--force-reset-latest

gpsscli start returns an error if its recorded offset does not match that of the data source. Re-run
gpsscli start and specify the --force-reset-latest option to load only new data emitted from
the data source.

ﬁ gpsscli start supports this option only when loading from a Kafka or RabbitMQ
stream data source.

@

--force-reset-latest specified on the command line takes precedence over a
FALLBACK OFFSET/fallback offset setin the jobconfig.yaml when the job was

195

Tanzu Greenplum Streaming Server

submitted.

--force-reset-timestamp tstamp

Specify the --force-reset-timestamp option to load messages published since the specified time.
tstamp must specify epoch time in milliseconds, and is bounded by the earliest message time and
the current time.

ﬂ gpsscli start supports this option only when loading from a Kafka or RabbitMQ
stream data source.

--skip-explain

Instructs GPSS to skip the explain SQL check step in its internal processing.
n gpsscli start supports this option only when loading from a Kafka data source.

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the Gpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpsscli

196

Tanzu Greenplum Streaming Server

subcommand.
-U | --username client_auth_usermame

The user name with which the GPSS server instance authenticates the client.
-P | --password client_auth_passwd

The password with which the GPSS server instance authenticates the client.
- | ~log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpssc1i client log files to the $HOME/gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | -help
Show command utility help, and then exit.

Examples

Start the GPSS job identified by the name nsync_121118:

$ gpsscli start nsync 121118

See Also

gpss, gpsscli list, gpsscli submit

gpsscli status

Display the status of a VMware Tanzu Greenplum streaming server job.
Synopsis

gpsscli status {<job_name> | <job_ id>}

[--config <gpsscliconfig.json>]

[--gpss-host <host>] [--gpss-port <port>]
[-U | --username <client auth user> -P | --password <client auth passwd>]
[--no-check-ca] [-1 | --log-dir <directory>] [--verbose]
gpsscli status {-h | --help}
Description

The gpsscli status command displays the status of a job submitted to a specific Tanzu Greenplum
streaming server (GPSS) instance. A job's status may be one of:

e Submitted - The job has been submitted.

197

Tanzu Greenplum Streaming Server

e Running - The job is running.
e Stopped- The job was stopped by a user.
e Success - The job completed successfully.
e Error- The job returned an error.
at any given point in its lifecycle.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

job_name | job_id
The identifier of a previously-submitted GPSS job. You can specify a job name when you run
gpsscli submit, or the command returns a unique job identifier.

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the cpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpsscli
subcommand.

-U | --username client_auth_username
The user name with which the GPSS server instance authenticates the client.

198

Tanzu Greenplum Streaming Server

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.
-l | --log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME/gpAdminTLogs
directory.

—-verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | —-help
Show command utility help, and then exit.

Examples

Show the status of the GPSS job identified by the name nsync 121118 to complete:

$ gpsscli status nsync_ 121118
See Also
gpss, gpsscli list, gpsscli submit

gpsscli stop

Stop one or more VMware Tanzu Greenplum streaming server jobs.

Synopsis

gpsscli stop {<job_name> | <job_id>}
[--all] [--gquit-at-eof]
[--config <gpsscliconfig.json>]
[--gpss-host <host>] [--gpss-port <port>]
[-U | --username <client_auth _user> -P | --password <client_ auth_passwd>]
[--no-check-ca] [-1 | --log-dir <directory>] [--verbose]

gpsscli stop {-h | --help}

Description

The gpsscli stop command stops a job submitted to a specific Tanzu Greenplum streaming server
(GPSS) instance.

Specify the --a11 flag to the command to stop all running jobs.

When you stop a running job, GPSS writes any batched data to VMware Tanzu Greenplum and stops
actively reading new data from the data source. The job transitions from the Running to the Stopped state.

199

Tanzu Greenplum Streaming Server

If the gpss instance servicing the job is configured to not reuse external tables (ReuseTables: false),
gpsscli stop also drops the external table currently associated with the job.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

job_name | job_id
The identifier of a previously-submitted GPSS job. You can specify a job name when you run
gpsscli submit, or the command returns a unique job identifier.

-all
Stop all currently running jobs.

—-quit-at-eof
When you specify this option, gpsscli stop reads data until it receives an EOF, then stops the job
and exits. The default behaviour of gpsscli stop is to immediately write any unwritten batched data
before stopping the job and exiting.

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the Gpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpssc1i
subcommand.

200

Tanzu Greenplum Streaming Server

-U | --username client_auth_username

The user name with which the GPSS server instance authenticates the client.
-P | --password client_auth_passwd

The password with which the GPSS server instance authenticates the client.
-l | -log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME /gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | --help
Show command utility help, and then exit.

Examples
Stop the GPSS job identified by the name nsync 121118:

$ gpsscli stop nsync 121118

See Also

gpss, gpsscli list, gpsscli submit

gpsscli submit

Submit one or more jobs to a VMware Tanzu Greenplum streaming server.
Synopsis

gpsscli submit <jobconfig.yaml> [...]

[--name <job_name>]

[-f | --force]

[-p | —-property <template_var=value>]
[--config <gpsscliconfig.json>]
[
[
[

--gpss-host <host>] [--gpss-port <port>]
-U | --username <client auth user> -P | --password <client auth passwd>]
--no-check-cal] [-1 | --log-dir <directory>] [--verbose]

gpsscli submit {-h | --help}

The gpsscli submit command submits a load job to a specific Tanzu Greenplum streaming server
(GPSS) instance. When you run the command, you provide one or more YAML-formatted configuration files

201

Tanzu Greenplum Streaming Server

that define the job parameters.

When you specify a single load configuration file, you may choose a name to identify the job. If you do not
provide a name, GPSS uses the base name of the load configuration file as the job identifier. For example,
if you invoke this command with the load configuration file /dir/jobconfig.yaml and do not provide the --
name option, GPSS assigns the job the identifier jobconfig.

When you submit a job, GPSS registers the job in its job list. A job is in the Submitted state after it is
submitted.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

jobconfig.yaml [...]

One or more YAML-formatted configuration files that define the parameters of the job(s). If a filename
provided is not an absolute path, VMware Tanzu Greenplum assumes the file system location is
relative to the current working directory.

ﬁ GPSS uses the properties in a YAML configuration file to uniquely identify a load
operation. Submit a configuration file only once. If you submit the same
configuration file more than once, GPSS will create the job, but it will eventually
error out.

--name job_name

Use job_name to identify the job. If you do not provide a name, the default job identifier is the base
name of the load configuration file. Job names must be unique.

ﬁ GPSS does not support specifying a job_name when you provide more than one
jobconfig.yaml load configuration file to the command.

-f | -force

Force GPSS to reload the configuration of a job. GPSS updates the job with the configuration
specified in jobconfig.yaml. When the configuration reload completes, the job transitions to the
Stopped state. If you previously named the job, you must provide --name job\ name when you
force job configuration reload with this option.

ﬁ Do not attempt to update a configuration property that GPSS uses to uniquely
identify a job. If you change any such configuration property, GPSS creates a new
internal job and loads all available messages.

-p | —property template_var=value

202

Tanzu Greenplum Streaming Server

Substitute value for instances of the property value template {{template_var}} referenced in the
jobconfig.yaml load configuration file.
--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the cpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpsscli
subcommand.

-U | --username client_auth_usermnmame
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | ~log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME/gpAdminTogs
directory.

--verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | —-help

203

Tanzu Greenplum Streaming Server

Show command utility help, and then exit.

Examples

Submit a GPSS job named nsync 121118 whose load parameters are defined by the configuration file
named loadcfg.yaml:

$ gpsscli submit --name nsync 121118 loadcfg.yaml

See Also

gpss, gpsscli.yaml

gpsscli wait

Wait for a VMware Tanzu Greenplum streaming server job to finish.
Synopsis

gpsscli wait {<job_name> | <job_id>}

[--config <gpsscliconfig.json>]

[--gpss-host <host>] [--gpss-port <port>]
[-U | --username <client_auth _user> -P | --password <client_ auth_passwd>]
[--no-check-ca] [-1 | --log-dir <directory>] [--verbose]

gpsscli wait {-h | --help}

The gpsscli wait command waits for job submitted to a specific Tanzu Greenplum streaming server
(GPSS) instance to complete. The command blocks until the job transitions to the Success or Error state.

If the GPSS instance to which you want to send the request is not running on the default host (127.0.0.1)
or the default port number (5000), you can specify the GPSS host and/or port via command line options.

Options

job_name | job_id
The identifier of a previously-submitted GPSS job. You can specify a job name when you run
gpsscli submit, or the command returns a unique job identifier.

--config gpsscliconfig.json

The GPSS configuration file. This file includes properties that identify the gpss instance that
services the command. When SSL encryption is enabled between the GPSS client and server, you
also use this file to identify the file system location of the client SSL certificates. Refer to gpss.json
for detailed information about the format of this file and the configuration properties supported.

204

Tanzu Greenplum Streaming Server

ﬁ gpsscli subcommands read the configuration specified in the ListenAddress
block of the gpsscliconfig.son file, and ignore the gpfdist configuration
specified in the cpfdist block of the file.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

--gpss-host host
The GPSS host. The default host address is 127.0.0.1. If specified, overrides a
ListenAddress:Host value provided in gpsscliconfig.json

--gpss-port port
The GPSS port number. The default port number is 5000. If specified, overrides a
ListenAddress:Port value provided in gpsscliconfig.json

--no-check-ca
Deactivate certificate verification when SSL is enabled between the GPSS client and server. By
default, GPSS checks the certificate authority (CA) each time that you invoke a gpssc1i
subcommand.

-U | --username client_auth_username
The user name with which the GPSS server instance authenticates the client.

-P | --password client_auth_passwd
The password with which the GPSS server instance authenticates the client.

-l | -log-dir directory

The directory to which GPSS writes client command log files. GPSS must have write permission to
the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes gpsscli client log files to the $HOME /gpAdminTogs
directory.

—-verbose
The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | --help
Show command utility help, and then exit.

Examples

Wait for the GPSS job identified by the name nsync 121118 to complete:

$ gpsscli wait nsync 121118

205

Tanzu Greenplum Streaming Server

See Also

gpss, gpsscli list, gpsscli submit

gpsscli.yaml

title: gpsscli.yaml

gpsscli configuration file.

Synopsis

DATABASE: <db_ name>

USER: <user name>
PASSWORD: <password>
HOST: <coordinator host>
PORT: <greenplum port>
VERSION: <version number>

<DATASOURCE>
<DATASOURCE_ specific properties>

[SCHEDULE:
RETRY INTERVAL: <retry time>
MAX RETRIES: <num_retries>
RUNNING DURATION: <run_time>
AUTO STOP_RESTART INTERVAL: <restart time>
MAX RESTART TIMES: <num_restarts>
QUIT AT EOF AFTER: <clock time>]

[ALERT:
COMMAND: <command_to_run>
WORKDIR: <directory>
TIMEOUT: <alert time>]

Where you may specify any property value with a template variable that GPSS substitutes at runtime using
the following syntax:

<PROPERTY:> {{<template_ var>}}

Description

You specify the configuration parameters for a VMware Tanzu Greenplum streaming server (GPSS) job in a
YAML-formatted configuration file that you provide to the gpsscli submit command. There are two types
of configuration parameters in this file - VMware Tanzu Greenplum connection parameters, and parameters
specific to the data source from which you will load data into Greenplum.

This reference page uses the name gpsscli.yaml to refer to this file; you may choose your own name for
the file.

206

Tanzu Greenplum Streaming Server

ﬁ GPSS currently supports loading data from Kafka and file data sources. Refer to Loading
Kafka Data into Greenplum and Loading File Data into Greenplum for detailed information
about using GPSS to load data into Tanzu Greenplum.

The gpsscli utility processes the YAML configuration file in order, using indentation (spaces) to determine
the document hierarchy and the relationships between the sections. The use of white space in the file is
significant, and keywords are case-sensitive.

Keywords and Values

VMware Tanzu Greenplum Options

DATABASE: db_name
The name of the Tanzu Greenplum.

USER: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in Configuring Tanzu Greenplum Role Privileges.

PASSWORD: password
The password for the Tanzu Greenplum user/role. By default, the GPSS client passes the password
to the GPSS server in clear text. When the password has a suapow: prefix, it represents a
shadowed password string, and GPSS uses the shadow:Key specified in its gpss.json configuration
file, or a default key, to decode the password.

HOST: coordinator_host
The host name or IP address of the Tanzu Greenplum coordinator host.

PORT: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.

VERSION: version_number
The version of the gpssc1i configuration file. GPSS supports versions 1 and 2 of this format.

DATASOURCE: Options

DATASOURCE

The data source. GPSS currently supports karka and F1LE data sources; refer to gpkafka-v2.yaml
and filesource-v2.yaml for configuration file format and parameters.

DATASOURCE_specific_parameters
Parameters specific to the datasource.

Job SCHEDULE: Options

SCHEDULE:

Controls the frequency and interval of restarting jobs.

RETRY_INTERVAL: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

207

Tanzu Greenplum Streaming Server

MAX_RETRIES: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

RUNNING_DURATION: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

AUTO_STOP_RESTART_INTERVAL: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
RUNNING DURATION.

MAX_RESTART_TIMES: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
RUNNING DURATION. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

QUIT_AT_EOF_AFTER: clock_time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

Job ALERT: Options

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

COMMAND: command_to_run
The command (program or script) that the GPSS server runs on the GPSS server host,
including arguments. You must specify the absolute path of the command, and the command
must be executable by GPSS.
If command_to _run is a script, you must specify the interpreter (for example, #! /bin/bash or
#!/usr/bin/python3) in the shell script file.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB NAME, $GPSSJOB STATUS, and $GPSSJOB DETATIL.

WORKDIR: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

TIMEOUT: alert_time
The maximum amount of time that command_to_run may run. GPSS starts the alert timer
after a job stops, and forcibly stops command_to_run if it is still running after alert_time. You
can specify the time interval in day (d), hour (h), minute (m), or second (s) integer units; do not
mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<PROPERTY>: {{<template_var>}}

208

Tanzu Greenplum Streaming Server

For example:
MAX RETRIES: {{numretries}}

GPSS substitutes the template variable with a value that you specify via the -p | --property
<template var=value> option to the gpsscli dryrun, gpsscli submit, gpsscli load, Of gpkafka load
command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Examples

Submit a job to load data into Tanzu Greenplum as defined in the load configuration file named

loadit.yaml:

$ gpsscli submit loadit.yaml

Example Tanzu Greenplum configuration parameters in 1oadit.yaml:

DATABASE: ops
USER: gpadmin
PASSWORD: changeme
HOST: mdw-1

PORT: 15432
<DATASOURCE_ block>

See Also

gpsscli load, gpsscli submit, gpkafka load, filesource-v2.yaml, gpkafka-v2.yaml

gpsscli-v3.yaml

GPSS load configuration file (version 3).
Synopsis
version: v3

targets:

- gpdb:
host: <host>
port: <greenplum_port>
user: <user_name>
password: <password>
database: <db_name>

209

Tanzu Greenplum Streaming Server

work schema: <work schema name>
error limit: <num _errors> | <percentage errors>
filter_expression: <filter_ string>
tables:
- table: <table_name>
schema: <schema name>
mode:
specify a single mode property block (described below)
insert: {}
update:

<mode_specific_property>: <value>

merge:

<mode_specific_property>: <value>

mapping:
<target_ column_ name> : <source_ column name> | <expression>

filter: <output filter string>

sources:
- <DATASOURCE>:
<DATASOURCE_ specific properties>
content:
<data_format>:
<column_spec>

<other props>

option:

schedule:
max_ retries: <num_retries>
retry interval: <retry time>
running duration: <run_time>
auto_stop restart interval: <restart time>
max_restart times: <num_restarts>
quit _at eof after: <clock_ time>

alert:
command: <command_to_run>
workdir: <directory>

timeout: <alert time>

Where the mode_specific_propertys that you can specify for update and merge mode follow:

update:
match_columns: [<match_ column_names>]
order_columns: [<order_column_names>]
update_columns: [<update_column_names>]

update_condition: <update_condition>

merge:
match_columns: [<match column_ names>]
update columns: [<update column_ names>]
order columns: [<order_ column_names>]

update condition: <update_condition>

delete condition: <delete_ condition>

210

Tanzu Greenplum Streaming Server

Where data_format, column_spec, and other_props are one of the following blocks (data source-specific):

avro:

source_column_name: <column_name>

schema_url: <http://schemareg host:schemareg port> %,

bytes to base64: <boolean>

binary:

source column name: <column name>

csv:
columns:
- name: <column_name>

type: <column_data_type>

delimiter: <delim_ char>
quote: <quote_ char>

null string: <nullstr_val>
escape: <escape_char>
force_not_null: <columns>

fill missing_fields: <boolean>

custom:
columns:
- name: <column_name>

type: <column_data_type>

name: <formatter name>
options:

- <optname>=<optvalue>

delimited:
columns:
- name: <column_name>

type: <column_data_type>

delimiter: <delimiter string>
eol prefix: <prefix string>
quote: <quote_ char>

escape: <escape_char>

json:
column:
name: <column_name>
type: json | jsonb
is_jsonl: <boolean>

newline: <newline str>

o

And where you may specify any property value with a template variable that GPSS substitutes at runtime

using the following syntax:

<property:> {{<template var>}}

21

Tanzu Greenplum Streaming Server
Description

ﬁ Version 3 of the GPSS load configuration file is different in both content and format than
previous versions of the file. Certain symbols used in the GPSS version 1 and 2
configuration file reference page syntax have different meanings in version 3 syntax:

e Brackets [] are literal and are used to specify a list in version 3. They are no
longer used to signify the optionality of a property.

e Curly braces {} are literal and are used to specify YAML mappings in version 3
syntax. They are no longer used with the pipe symbol (|) to identify a list of
choices.

You specify the configuration properties for a VMware Tanzu Greenplum streaming server (GPSS) job in a
YAML-formatted configuration file that you provide to the gpsscli submit Or gpsscli load command.
There are three types of configuration information in this file - target VMware Tanzu Greenplum connection
and data import properties, properties specific to the data source from which you will load data into
Greenplum, and properties specific to the GPSS job.

This reference page uses the name gpsscli-v3.yaml to refer to this file; you may choose your own name
for the file.

The gpsscli utility processes the YAML configuration file in order, using indentation (spaces) to determine
the document hierarchy and the relationships between the sections. The use of white space in the file is
significant. Keywords are not case-sensitive.

You can use the gpsscli convert command to convert a V2 load configuration file to V3 syntax.

Keywords and Values

version Property

version: v3
The version of the configuration file. You must specify version: v3.

targets:gpdb Properties

host: host
The host name or IP address of the Tanzu Greenplum coordinator host.
port: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.
user: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the Configuring Tanzu Greenplum Role Privileges.
password: password
The password for the Tanzu Greenplum user/role.
database: db_name
The name of the Tanzu Greenplum.
work_schema: work_schema_name

212

Tanzu Greenplum Streaming Server

The name of the Tanzu Greenplum schema in which GPSS creates internal tables. The default
work_schema_name is public.

error_limit: num_errors | percentage_errors
The error threshold, specified as either an absolute number or a percentage. GPSS stops running the
job when this limit is reached.

filter_expression: filter_string
The filter to apply to the input data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. filter_string must be a valid SQL conditional expression and may reference one or more
source value, key, or meta column names.

tables:

The Tanzu Greenplum tables, and the data that GPSS will load into each.

table: table_name
The name of the Tanzu Greenplum table into which GPSS loads the data.
schema: schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.
mode:
The table load mode; insert, merge, Or update. The default mode is insert.

n update and merge are not supported if the target table column name is a reserved
keyword, has capital letters, or includes any character that requires quotes (" ") to
identify the column.

insert:
Inserts source data into Greenplum.
update:
Updates the target table columns that are listed in update columns when the input columns
identified in match columns match the named target table columns and the optional
update condition is true.
merge:
Inserts new rows and updates existing rows when:

e columns are listed in update columns,

e thematch columns target table column values are equal to the input data, and
e anoptional update condition is specified and met. Deletes rows when:

e thematch columns target table column values are equal to the input data, and
e anoptional delete condition is specified and met.

New rows are identified when the match columns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the
source file is inserted, not only the match columns and update columns. If there are multiple new
match columns values in the input data that are the same, GPSS inserts or updates the target table

213

Tanzu Greenplum Streaming Server

using a random matching input row. When you specify order columns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.

mode_property _name: value
The name to value mapping for a mode property. Each mode supports one or more of the
following properties as specified in the Synopsis.

match_columns: [match_column_names]
A comma-separated list that specifies the column(s) to use as the join condition for the
update. The attribute value in the specified target column(s) must be equal to that of the
corresponding source data column(s) in order for the row to be updated in the target table.
Required when mode is merge Or update.

order_columns: [order_column_names]
A comma-separated list that specifies the column(s) by which GPSS sorts the rows. When
multiple matching rows exist in a batch, order columns is used with match columns to
determine the input row with the largest value; GPSS uses that row to write/update the target.
Optional. May be specified in merge mode to sort the input data rows.

update_columns: [update_column_names]
A column-sparated list that specifies the column(s) to update for the rows that meet the
match columns criteria and the optional update condition.
Required when mode is merge Or update.

update_condition: update_condition
Specifies a boolean condition, similar to that which you would declare in a wHERE clause, that
must be met in order for a row in the target table to be updated (or inserted, in the case of a
merge). Optional.

delete_condition: delete_condition
In merge mode, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
match columns criteria. Optional.

mapping:
Optional. Overrides the default source-to-target column mapping.

ﬁ When you specify a mapping, ensure that you provide a mapping for all
source data elements of interest. GPSS does not automatically match
column names when you provide a mapping block.

target_column_name: source_column_name \| expression

target\ column\ name specifies the target Tanzu Greenplum table column name.
GPSS maps this column name to the source column name specified in source\ column
_name, or to an expression. When you specify an expression, you may provide a va
lue expression that you would specify in the "SELECT 1list of a query, such as a
constant value, a column reference, an operator invocation, a built-in or user-de

fined function call, and so on.

filter: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the
filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the

214

Tanzu Greenplum Streaming Server

message is dropped. output_filter_string must be a valid SQL conditional expression and may
reference one or more META or VALUE column names.

sources: Properties

sources:

The data source.

DATASOURCE
GPSS currently supports file, kafka, rabbitmg, and s3 data sources.

DATASOURCE_ specific_properties
Configuration properties specific to the file, kafka, rabbitmg, Or s3 data source; refer to
filesource-v3.yaml, gpkafka-v3.yaml, rabbitmg-v3.yaml, and s3source-v3.yaml for version 3
configuration file format and properties for these sources.

option: Properties

schedule:

Controls the frequency and interval of restarting jobs.

retry_interval: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

max_retries: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

running_duration: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

auto_stop_restart_interval: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
running duration.

max_restart_times: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
running duration. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

quit_at_eof after: clock time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

alert:

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

command: command_to_run

215

Tanzu Greenplum Streaming Server

The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB STATUS, and $GPSSJOB_DETAIL.

workdir: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

timeout: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (1), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<property>: {{<template var>}}
For example:
max_retries: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<templateivar:value>'Opﬁontothe gpsscli dryrun, gpsscli submit, OF gpsscli load command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the load configuration file. For example, if you create a
table as follows:

CREATE TABLE "MyTable" (cl text);
Your YAML configuration file would refer to the table name as:

targets:
- gpdb:
tables:
- table: '"MyTable"'

216

Tanzu Greenplum Streaming Server

You can specify backslash escape sequences in the CSV delimiter, quote, and escape options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

Submit a job to load data into Tanzu Greenplum as defined in the v3 load configuration file named
loadit v3.yaml:

$ gpsscli submit loadit v3.yaml
Example Tanzu Greenplum configuration properties in 1oadit v3.yaml:

version: v3
targets:
- gpdb:
host: mdw-1
port: 5432
user: gpadmin
password: changeme
database: testdb
work_ schema: public
error_limit: "25"
tables:
- table: orders
schema: public
mode :

insert {}

sources:
- kafka:

<kafka specific properties>

See Also

gpsscli convert, gpsscli submit, filesource-v3.yaml, gpkafka-v3.yaml, rabbitmg-v3.yaml, s3source-v3.yaml

gpkafka

Command utility for loading Kafka data into VMware Tanzu Greenplum.

Synopsis

gpkafka <subcommand> [<options>]
gpkafka load
gpkafka {help | -h | --help}

gpkafka --version

217

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Tanzu Greenplum Streaming Server
Description

ﬁ gpkafka is a wrapper around the VMware Tanzu Greenplum streaming server (GPSS) gpss
and gpsscli utilities. If you want to use encryption, you must explicitly start a Tanzu
Greenplum streaming server instance with the gpss command, and use the gpsscli
subcommands, not gpkafka, to submit and manage the load job.

VMware recommends that you migrate to using the GPSS utilities directly.

The Tanzu Greenplum streaming server includes the gpkafka command utility. gpkafka provides a
subcommand to load Kafka data into Tanzu Greenplum:

e gpkafka load - load data from a single Kafka topic into a Tanzu Greenplum table

e gpkafka help - display command help

Options

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

-l | -log-dir directory

Specify the directory to which GPSS writes client command log files. gpkafka must have write
permission to the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes client log files to the $HOME/gpAdminTogs directory.
--verbose

The default behaviour of the command utility is to display information and error messages to stdout.

When you specify the --verbose option, GPSS also outputs debug-level messages about the

operation.
-h | --help

Show command utility help, and then exit.
--version

Show the version of gpkafka, and then exit.

See Also

gpkafka load, gpss, gpsscli

gpkafka load

Load data from Kafka into VMware Tanzu Greenplum.

218

Tanzu Greenplum Streaming Server

Synopsis

gpkafka load <jobconfig.yaml>

[--name <job_ name>]

[-f | --force] [--quit-at-eof] [--partition]

[{--force-reset-earliest | --force-reset-latest | --force-reset-timestamp <tstamp
>1}]

-p | --property <template var=value>]

[
[--config <gpfdistconfig.json>]

[--gpfdist-host <hostaddr>] [--gpfdist-port <portnum>]
[

[

--debug-port <portnum>]
--color] [--csv-log]
[-1 | --log-dir <directory>] [--verbose]
gpkafka load {-h | --help}
Description
ﬁ gpkafka load is a wrapper around the VMware Tanzu Greenplum streaming server

(GPSS) gpss and gpsscli utilities. Starting in Tanzu Greenplum streaming server version
1.3.2, gpkafka load no longer launches a gpss server instance, but rather calls the
backend server code directly.

When you run gpkafka load, the command submits, starts, and stops a GPSS job on your behalf.
VMware recommends that you migrate to using the GPSS utilities directly.

The gpkafka load utility loads data from a Kafka topic into a Tanzu Greenplum table. When you run the
command, you provide a YAML-formatted configuration file that defines load parameters such as the Tanzu
Greenplum connection options, the Kafka broker and topic, and the target Tanzu Greenplum table.

gpkafka load uses the gpfdist or gpfdists protocol to load data into Greenplum. You can configure the
protocol options by providing a JSON-formatted GPSS configuration file via the --config
gpfdistconfig.json option to the command, or by specifying the --gpfdist-host hostaddr and/or --
gpfdist-port portnum options.

By default, gpkafka load loads all Kafka messages published to the topic, and then waits indefinitely for
new messages to load. When you provide the --quit-at-eof option to the command, the utility exits after
it reads all published messages and writes the data to Tanzu Greenplum.

If you provide the --debug-port option, gpkafka load displays debug information to stdout during the
load operation and starts a debug server from which you can obtain additional debug information.

In the case of user interrupt or exit, gpkafka load resumes a load operation specifying the same Kafka
topic and Tanzu Greenplum table, target schema, and database names from the last recorded offset. If
GPSS detects an offset mismatch, you can choose to resume a load operation from the earliest available
offset for the topic. Or, you may choose to load only new messages published to the topic, or messages
published since a specific time.

Options

219

Tanzu Greenplum Streaming Server

jobconfig.yaml
The Version 1 (deprecated), Version 2, or Version 3 YAML-formatted configuration file that defines
the load operation parameters. If the filename provided is not an absolute path, Tanzu Greenplum
assumes the file system location is relative to the current working directory. Refer to gpkafka.yaml
and gpkafka-v2.yaml for the format and content of the parameters that you specify in Versions 1 and
2 of this file. Refer to gpkafka-v3.yaml for Version 3 format information.

--name job_name
Use job_name to identify the job. If you do not provide a name, the command assigns a unique
identifier to the job.

-f | --force

Force GPSS to reload the configuration of a running job. GPSS stops the job, updates the job with
the configuration specified in jobconfig.yaml, and then restarts the job. If you previously named the
job, you must provide --name job\ name when you force job configuration reload with this option.

ﬁ Do not attempt to update a configuration property that GPSS uses to uniquely
identify a Kafka job (the Kafka topic name and the Tanzu Greenplum, schema, and
table names). If you change any such configuration property, GPSS creates a new
internal job and loads all available messages.

--quit-at-eof

When you specify this option, gpkafka load exits after it reads all of the Kafka messages published
to the topic. The default behaviour of gpkafka load is to wait indefinitely for, and then consume,
new Kafka messages published to the topic.

gpkafka load ignores job retry scHEDULE configuration settings when it is invoked with the --quit-
at-eof flag.

—-partition
By default, gpkafka load outputs the job progress by batch, and displays the start and end times,
the message number and size, the number of inserted and rejected rows, and the transfer speed per
batch. When you specify the --partition option, gpkafka load outputs the job progress by
partition, and displays the partition identifier, the start and end times, the beginning and ending
offsets, the message size, and the transfer speed per partition.

--force-reset-earliest

gpkafka load returns an error if its recorded offset does not match the Kafka message offset for the
topic. Re-run gpkafka load and specify the --force-reset-earliest option to resume the load
operation from the earliest available message published to the Kafka topic.

ﬁ --force-reset-earliest specified on the command line takes precedence over a
FALLBACK OFFSET/fallback offset setin the jobconfig.yaml.

--force-reset-latest

gpkafka load returns an error if its recorded offset does not match the Kafka message offset for the
topic. Re-run gpkafka load and specify the --force-reset-latest option to load only new data

220

Tanzu Greenplum Streaming Server

messages published to the Kafka topic.

ﬁ --force-reset-latest specified on the command line takes precedence over a
FALLBACK OFFSET/fallback offset setin the jobconfig.yaml.

--force-reset-timestamp tstamp
Specify the --force-reset-timestamp option to load Kafka messages published to the topic from
the offset associated with the specified time. tstamp must specify epoch time in milliseconds, and is
bounded by the earliest message time and the current time.

-p | —property template_var=value
Substitute value for instances of the property value template {{template_var}} referenced in the
jobconfig.yaml load configuration file.

--config gpfdistconfig.json

The GPSS configuration file. This file includes properties that configure the gpfdist/s protocol used
for the load request. Refer to gpss.json for detailed information about the format of this file and the
configuration properties supported.

ﬁ gpkafka load reads the configuration specified in the Gpfdist protocol block of the
gpfdistconfig.json file; it ignores the GPSS configuration specified in the
ListenAddress block of the file.

--gpfdist-host hostaddr
The gpfdist service host name or IP address that GPSS sets in the external table LocaTION
clause. If specified, overrides a Gpfdist :Host value provided in gpfdistconfig.json.

—-gpfdist-port portnum
The gpfdist service port number. If specified, overrides a Gpfdist:Port value provided in
gpfdistconfig. json.

--debug-port portnum
When you specify this option, gpkafka load starts a debug server at the port identified by portnum;
additional debug information including the call stack and performance statistics is available via cur1
http://gpkafkahost:portnum/debug/pprof/.

--color

Enable the use of color when displaying front-end log messages. When specified, GPSS colors the
log level in messages that it writes to stdout. Color is deactivated by default.

GPSS ignores the --color option if you also specify --csv-1og.

--csv-log
Write front-end log messages in CSV format. By default, GPSS writes log messages to stdout
using spaces between fields for a more human-readable format.

-l | --log-dir directory

Specify the directory to which GPSS writes client command log files. GPSS must have write
permission to the directory. GPSS creates the log directory if it does not exist.

If you do not provide this option, GPSS writes client log files to the $HOME /gpAdminTogs directory.
--verbose

221

Tanzu Greenplum Streaming Server

The default behaviour of the command utility is to display information and error messages to stdout.
When you specify the --verbose option, GPSS also outputs debug-level messages about the
operation.

-h | —-help
Show command utility help, and then exit.

Examples

Stream Kafka data into Tanzu Greenplum using the load parameters defined in a configuration file named
loadcfg.yaml located in the current directory:

gpkafka load loadcfg.yaml

Load Kafka data into Tanzu Greenplum using a configuration file located in the current directory named
loadcfg.yaml; exit the load operation after reading all Kafka messages published to the topic:

gpkafka load --quit-at-eof loadcfg.yaml

See Also

gpkafka.yaml, gpkafka-v2.yaml, gpss, gpss.json, gpsscli

gpkafka-v3.yaml

GPSS load configuration file for a Kafka data source (version 3).

Synopsis

version: v3

targets:
- gpdb:
host: <host>
port: <greenplum port>
user: <user name>
password: <password>
database: <db name>
work schema: <work schema name>
error_limit: <num_errors> | <percentage_errors>
filter_expression: <filter_ string>
tables:
- table: <table name>
schema: <schema name>
mode:
specify a single mode property block (described below)
insert: {}
update:

<mode_specific_property>: <value>

merge:

<mode_specific_property>: <value>

222

Tanzu Greenplum Streaming Server

transformer:
transform: <udf_transform_udf_ name>
properties:

<udf transform property name>: <property value>

columns:

- <udf_transform_column_name>

mapping:
<target_ column_ name> : <source_ column name> | <expression>

filter: <output filter string>

sources:
- kafka:
topic: <kafka topic>
brokers: <kafka_broker_ host:broker_port> %,

o

partitions: (<partition_numbers>)
key content:
<data_ format>:
<column_spec>
<other props>
value content:
<data_format>:
<column_spec>
<other props>
meta:
json:
column:
name: meta
type: Jjson
encoding: <char set>
transformer:
path: <path to plugin transform library>
on_init: <plugin_transform_init name>
transform: <plugin transform name>
properties:
<plugin_ transform property name>: <property value>
rdkafka prop:

<kafka property name>: <kafka property value>

task:
batch_size:
max_count: <number of rows>
interval ms: <wait time>
idle duration ms: <idle time>
window_size: <num_batches>
window_statement: <udf or sql to_ run>
prepare_ statement: <udf_or_sqgl to_run>
teardown_statement: <udf or_sgl to_run>
save_failing_batch: <boolean>
recover_failing batch: <boolean> (Beta)
consistency: strong | at-least | at-most | none
fallback offset: earliest | latest

223

option:

schedule:

max_retries: <num_retries>

retry interval: <retry time>

running duration: <run_time>

auto_
max_restart times:

quit

alert:

stop_restart interval: <restart time>

at _eof after: <clock time>

command: <command_to_run>

workdir: <directory>

timeout: <alert time>

<num_restarts>

Tanzu Greenplum Streaming Server

Where the mode_specific_propertys that you can specify for update and merge mode follow:

update:

match_columns:
order_columns:
update
update_

merge:

match_columns:
update
order_ columns:
update
delete

Where data_format, column_spec, and other_props are one of the following blocks

avro:

source_

schema_

columns: [<update_column_names>]

condition: <update condition>

columns: [<update column_names>]

condition: <update condition>

condition: <delete condition>

column_name: <column_name>

url: <http://schemareg host:schemareg port> %,

bytes_to_base64: <boolean>

schema
schema
schema
schema_

schema

binary:

source_

CsSv:

ca_on_gpdb: <sr ca file path>
cert on gpdb: <sr cert file path>
key on gpdb: <sr_key file path>
min_tls version: <minimum_version>

path on gpdb: <path to file>

column_name: <column_name>

columns:

— nhame: <column_name>

type: <column_data_type>

delimiter: <delim char>

quote:

<quote_char>

null string: <nullstr_val>

escape:

<escape_char>

[<match_column_names>]

[<order_column_names>]

[<match_ column_names>]

[<order_ column_names>]

oe

224

Tanzu Greenplum Streaming Server

force not null: <columns>
fill missing_fields: <boolean>

custom:
columns:
- name: <column_name>

type: <column_data_type>

name: <formatter_ name>
options:
- <optname>=<optvalue>

delimited:
columns:
- name: <column_name>

type: <column_data_type>

delimiter: <delimiter_ string>
eol prefix: <prefix string>
quote: <quote_char>

escape: <escape char>

json:
column:
name: <column_ name>
type: json | Jsonb
is_jsonl: <boolean>

newline: <newline str>

And where you may specify any property value with a template variable that GPSS substitutes at runtime
using the following syntax:

<property:> {{<template var>}}
Description

ﬁ Version 3 of the GPSS load configuration file is different in both content and format than
previous versions of the file. Certain symbols used in the GPSS version 1 and 2
configuration file reference page syntax have different meanings in version 3 syntax:

e Brackets [] are literal and are used to specify a list in version 3. They are no
longer used to signify the optionality of a property.

e Curly braces {} are literal and are used to specify YAML mappings in version 3
syntax. They are no longer used with the pipe symbol () to identify a list of
choices.

You specify load configuration properties for a VMware Tanzu Greenplum streaming server (GPSS) Kafka
load job in a YAML-formatted configuration file. (This reference page uses the name gpkafka-v3.yaml
when referring to this file; you may choose your own name for the file.) Load properties include VMware

225

Tanzu Greenplum Streaming Server

Tanzu Greenplum connection and data import properties, Kafka broker, topic, and message format
information, and properies specific to the GPSS job.

The gpsscli and gpkafka load utilities processes the YAML configuration file in order, using indentation
(spaces) to determine the document hierarchy and the relationships between the sections. The use of white
space in the file is significant. Keywords are not case-sensitive.

Keywords and Values

version Property

version: v3
The version of the configuration file. You must specify version: v3.

targets:gpdb Properties

host: host
The host name or IP address of the Tanzu Greenplum coordinator host.

port: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.

user: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the Configuring Tanzu Greenplum Role Privileges.

password: password
The password for the Tanzu Greenplum user/role.

database: db_name
The name of the Tanzu Greenplum.

work_schema: work_schema_name
The name of the Tanzu Greenplum schema in which GPSS creates internal tables. The default
work_schema_name is public.

error_limit: num_errors | percentage_errors
The error threshold, specified as either an absolute number or a percentage. GPSS stops running the
job when this limit is reached.

filter_expression: filter_string
The filter to apply to the input data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. filter_string must be a valid SQL conditional expression and may reference one or more
source value, key, or meta column names.

tables:

The Tanzu Greenplum tables, and the data that GPSS will load into each.

table: table_name
The name of the Tanzu Greenplum table into which GPSS loads the data.
schema: schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.
mode:
The table load mode; insert, merge, Or update. The default mode is insert.

226

Tanzu Greenplum Streaming Server

ﬁ update and merge are not supported if the target table column name is a reserved
keyword, has capital letters, or includes any character that requires quotes (" ") to
identify the column.

insert:
Inserts source data into Greenplum.
update:
Updates the target table columns that are listed in update columns when the input columns
identified in match columns match the named target table columns and the optional
update condition is true.
merge:
Inserts new rows and updates existing rows when:

e columns are listed in update columns,
¢ thematch columns target table column values are equal to the input data, and
e anoptional update condition is specified and met.

Deletes rows when:
e thematch columns target table column values are equal to the input data, and
e anoptional delete condition is specified and met.

New rows are identified when the match columns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the
source file is inserted, not only the match columns and update columns. If there are multiple new
match columns values in the input data that are the same, GPSS inserts or updates the target table
using a random matching input row. When you specify order columns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.

mode_property _name: value
The name to value mapping for a mode property. Each mode supports one or more of the
following properties as specified in the Synopsis.

match_columns: [match_column_names]
A comma-separated list that specifies the column(s) to use as the join condition for the
update. The attribute value in the specified target column(s) must be equal to that of the
corresponding source data column(s) in order for the row to be updated in the target table.
Required when mode iS merge Or update.

order_columns: [order_column_names]
A comma-separated list that specifies the column(s) by which GPSS sorts the rows. When
multiple matching rows exist in a batch, order columns is used with match columns to
determine the input row with the largest value; GPSS uses that row to write/update the target.
Optional. May be specified in merge mode to sort the input data rows.

update_columns: [update_column_names]
A column-sparated list that specifies the column(s) to update for the rows that meet the
match columns criteria and the optional update condition.
Required when mode is merge Or update.

227

Tanzu Greenplum Streaming Server

update_condition: update_condition
Specifies a boolean condition, similar to that which you would declare in a wHERE clause, that
must be met in order for a row in the target table to be updated (or inserted, in the case of a
merge). Optional.

delete_condition: delete_condition
In merge mode, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
match columns criteria. Optional.

transformer:

Optional. Output data transform block. An output data transformer is a user-defined function
(UDF) that transforms the data before it is loaded into Tanzu Greenplum. The semantics of
the UDF are transform-specific.

ﬁ GPSS currently supports specifying only one of the mapping or (UDF)
transformer blocks in the load configuration file, not both.

transform: udf _transform_udf name
The name of the output transform UDF. GPSS invokes this function for every batch of data it
writes to Tanzu Greenplum.
properties: udf_transform_property _name: property value
One or more property name and value pairs that GPSS passes to udf_transform_udf _name.
columns: udf_transform_column_name
The name of one or more columns involved in the transform.
mapping:
Optional. Overrides the default source-to-target column mapping.

ﬁ GPSS currently supports specifying only one of the mapping or (UDF) transformer
blocks in the load configuration file, not both.

ﬁ When you specify a mapping, ensure that you provide a mapping for all source data
elements of interest. GPSS does not automatically match column names when you
provide a mapping block.

target_column_name: source_column_name | expression
target_column_name specifies the target Tanzu Greenplum table column name. GPSS maps
this column name to the source column name specified in source_column_name, or to an
expression. When you specify an expression, you may provide a value expression that you
would specify in the seLECT list of a query, such as a constant value, a column reference, an
operator invocation, a built-in or user-defined function call, and so on.

filter: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the
filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the

228

Tanzu Greenplum Streaming Server

message is dropped. output_filter_string must be a valid SQL conditional expression and may
reference one or more META or VALUE column names.

sources:kafka: Options

topic: kafka_topic

The name of the Kafka topic from which to load data. The topic must exist.

brokers: kafka_broker_host:broker_port

A host and port number for each of one or more Kafka brokers.

partitions: (partition_numbers)

K

A single, a comma-separated list, and/or a range of partition numbers from which GPSS reads
messages from the Kafka topic. A range that you specify with the M. . .n syntax includes both the
range start and end values. By default, GPSS reads messages from all partitions of the Kafka topic.

Ensure that you do not configure multiple jobs that specify overlapping partition numbers in
the same topic; GPSS behavior is undefined.

key_content:

The Kafka message data type, field names, and type-specific properties. You must specify all Kafka
key elements in the order in which they appear in the Kafka message. Optional when you specify a
value content block; GPSS ignores the Kafka message key in this circumstance.

value_content:

K

The Kafka message value data type, field names, and type-specific properties. You must specify all
Kafka data elements in the order in which they appear in the Kafka message. Optional when you
specify a key content block; GPSS ignores the Kafka message value in this circumstance.

You must not provide a value content block when you specify csv format for the
key content block. Similarly, you must not provide a key content block when you
specify csv format for a value content block.

column_spec

The source to Greenplum column mapping. The supported column specification differs for different
data formats as described below.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined
in source column name, column:name, Of columns:name With a column name in the target Tanzu
Greenplum table. You can override the default mapping by specifying a mapping: block.

data_format

avro

The format of the key or value data. You may specify a data_format of avro, binary, csv, custom,
delimited, or json for the key and value, with some restrictions.

When you specify the avro data format for a key or value, GPSS reads the data into a single json-
type column. You may specify a schema registery location and optional SSL certificates and keys,
and whether or not you want GPSS to convert bytes fields into base64-encoded strings.

source_column_name: column_name

229

Tanzu Greenplum Streaming Server

The name of the single json-type column into which GPSS reads the key or value data.
schema_url: schemareg_host:schemareg_port
When you specify the avro format and the Avro schema of the JSON data that you want to load is
registered in the Confluent Schema Registry, you must identify the host name and port number of
each Confluent Schema Registry server in your Kafka cluster. You may specify more than one
address, and at least one of the addresses must be legal.
bytes to base64: boolean
When true, GPSS converts Avro bytes fields into base64-encoded strings. The default value is
false, GPSS does not perform the conversion.
schema_ca_on_gpdb: sr_ca file_path
The file system path to the CA certificate that GPSS uses to verify the peer. This file must reside in
sr_ca_file_path on all Tanzu Greenplum segment hosts.
schema_cert_on_gpdb: sr_cert_file_path
The file system path to the client certificate that GPSS uses to connect to the HTTPS schema
registry. This file must reside in sr_cert_file_path on all Tanzu Greenplum segment hosts.
schema_key on_gpdb: sr_key file path
The file system path to the private key file that GPSS uses to connect to the HTTPS schema
registry. This file must reside in sr_key file path on all Tanzu Greenplum segment hosts.
schema_min_tls_version: minimum_version
The minimum transport layer security (TLS) version that GPSS requests on the connection to the
schema registry. Supported versions are 1.0, 1.1, 1.2, or 1.3. The default minimum TLS version is
1.0.
schema_path_on_gpdb: path_to_file
When you specify the avro format and the Avro schema of the JSON key or value data that you
want to load is specified in a separate .avsc file, you must identify the file system location in
path_to file, and the file must reside in this location on every Tanzu Greenplum segment host.

ﬁ GPSS does not cache the schema. GPSS must reload the schema for every batch of
Kafka data. Also, GPSS supports providing the schema for either the key or the value, but
not both.

binary

When you specify the binary data format, GPSS reads the data into a single bytea-type column.
source_column_name: column_name
The name of the single bytea-type column into which GPSS reads the key or value data.
csv
When you specify the csv data format, GPSS reads the data into the list of columns that you
specify. The message content cannot contain line ending characters (CR and LF).
columns:
A set of column name/type mappings. The value [] specifies all columns.
name: column_name
The name of a key or value column. column_name must match the column name of the target Tanzu
Greenplum table.
type: column_data_type

230

Tanzu Greenplum Streaming Server

The data type of the column. You must specify an equivalent data type for each data element and
the associated Tanzu Greenplum table column.

delimiter: delim_char
Specifies a single ASCII character that separates columns within each message or row of data. The
default delimiter is a comma ().

quote: quote _char
Specifies the quotation character. Because GPSS does not provide a default value for this property,
you must specify a value.

null_string: nullstr_val
Specifies the string that represents the null value. Because GPSS does not provide a default value
for this property, you must specify a value.

escape: escape_char
Specifies the single character that is used for escaping data characters in the content that might
otherwise be interpreted as row or column delimiters. Make sure to choose an escape character that
is not used anywhere in your actual column data. Because GPSS does not provide a default value
for this property, you must specify a value.

force_not_null: columns
Specifies a comma-separated list of column names to process as though each column were quoted
and hence not a NULL value. For the default null string (nothing between two delimiters), missing
values are evaluated as zero-length strings.

fill_missing_fields: boolean
Specifies the action of GPSS when it reads a row of data that has missing trailing field values (the
row has missing data fields at the end of a line or row). The default value is false, GPSS returns an
error when it encounters a row with missing trailing field values.

If set to true, GPSS sets missing trailing field values to nurL. Blank rows, fields with a NoT NULL
constraint, and trailing delimiters on a line will still generate an error.

custom
When you specify the custom data format, GPSS uses the custom formatter that you specify to
process the input data before writing it to Tanzu Greenplum.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target Tanzu
Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element and
the associated Tanzu Greenplum table column.

name: formatter_name
When you specify the custom data format, formatter_name is required and must identify the name of
the formatter user-defined function that GPSS should use when loading the data.

options:
A set of function argument name=value pairs.

optname=optvalue
The name and value of the set of arguments to pass into the formatter_name UDF.

delimited

231

Tanzu Greenplum Streaming Server

When you specify the delimited data format, GPSS reads the data into the list of columns that you
specify. You must specify the data delimiter.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target Tanzu
Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element and
the associated Tanzu Greenplum table column.

delimiter: delimiter_string
When you specify the delimited data format, delimiter_string is required and must identify the data
element delimiter. delimiter_string may be a multi-byte value, and up to 32 bytes in length. It may not
contain quote and escape characters.

eol_prefix: prefix_string
Specifies the prefix before the end of line character (\n) that indicates the end of a row. The default
prefix is empty.

quote: quote_char
Specifies the single ASCII quotation character. The default quote character is empty.
If you do not specify a quotation character, GPSS assumes that all columns are unquoted. If you do
not specify a quotation character and do specify an escape character, GPSS assumes that all
columns are unquoted and escapes the delimiter, end-of-line prefix, and escape itself.
When you specify a quotation character, you must specify an escape character. GPSS reads any
content between quote characters as-is, except for escaped characters.

escape: escape_char
Specifies the single ASCII character used to escape special characters (for example, the
delimiter, eol prefix, quote, OF escape itself). Therdefault escape character is empty.
When you specify an escape character and do not specify a quotation character, GPSS escapes
only the delimiter, end-of-line prefix, and escape itself.
When you specify both an escape character and a quotation character, GPSS escapes only these
characters.

json
When you specify the json data format, GPSS can read the data as a single JSON object or as a
single JSON record per line.

column:
A single column name/type mapping.

name: column_name
The name of the key or value column. column_name must match the column name of the target
Tanzu Greenplum table.

type: json | jsonb | gp_jsonb | gp_json
The data type of the column.

is_jsonl: boolean
Identifies whether or not GPSS reads the JSON data as a single object or single-record-per-line. The
default is false, GPSS reads the JSON data as a single object.

newline: newline_str
A string that specifies the new line character(s) that end each JSON record. The default newline is

"\l’l".

232

meta:

Tanzu Greenplum Streaming Server

The data type and field name of the Kafka meta data. meta: must specify the json or §sonb
(Greenplum 6 only) data format, and a single json-type column. The available Kafka meta data
properties include:

e topic (text) - the Kafka topic name

e partition (int) - the partition number

o offset (bigint) - the record location within the partition

¢ timestamp (bigint) - the time that the message was appended to the Kafka log

You can load any of these properties into the target table with a mapping, or use a property in the
update or merge criteria for a load operation.

encoding: char_set

The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, Or §son format. GPSS supports the character sets identified in Character
Set Support in the Tanzu Greenplum documentation.

transformer:

Input data transform block. An input data transformer is a plugin, set of go functions that transform
the data after it is read from the source. The semantics of the transform are function-specific. You
specify the library and function names in this block, as well as the properties that GPSS passes to
these functions:

path: path_to_plugin_transform_library
The file system location of the plugin transformer library on the Tanzu Greenplum streaming
server server host.
on_init: plugin_transform_init_name
The name of an initialization function that GPSS calls when it loads the transform library.
transform: plugin_transform_name
The name of the transform function. GPSS invokes this function for every message it reads.
properties: plugin_transform_property name: property value
One or more property name and value pairs that GPSS passes to plugin_transform_init_name
and plugin_transform_name.

rdkafka_prop:

task:

Kafka consumer configuration property names and values.

kafka_property_name

The name of a Kafka property.
kafka_property _value

The Kafka property value.

The batch size and commit window.

batch_size:

233

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

Tanzu Greenplum Streaming Server

Controls how GPSS commits data to Tanzu Greenplum. You may specify both max count
and interval ms as long as both values are not zero (0). Try setting and tuning interval ms
to your environment; introduce a max_count setting only if you encounter high memory usage
associated with message buffering.

max_count: number_of_rows
The number of rows to batch before triggering an 1nseERT operation on the Tanzu Greenplum
table. The default value of max count is 0, which instructs GPSS to ignore this commit trigger
condition.

interval_ms: wait_time
The minimum amount of time to wait (milliseconds) between each 1NSERT operation on the
table. The default value is 5000.

idle_duration_ms: idle_time
The maximum amount of time to wait (milliseconds) for the first batch of Kafka data. When
you use this property to enable lazy load, GPSS waits until Kafka data is available before
locking the target Greenplum table. You can specify:

e 0 (lazy load is deactivated)
e -1 (lazy load is activated, the job never stops), or

e apositive value (lazy load is activated, the job stops after idle_time duration of no data in
the Kafka topic)

The default value is 0.

window_size: num_batches
The number of batches to read before running window statement. The default batch interval
is 0.
window_statement: udf_or_sql_to run
A user-defined function or SQL command(s) that you want to run after GPSS reads
window size number of batches. The default is null, no command to run.
prepare_statement: udf_or_sql to run
A user-defined function or SQL command(s) that you want GPSS to run before it executes the
job. The default is null, no command to run.
teardown_statement: udf or _sql to run
A user-defined function or SQL command(s) that you want GPSS to run after the job stops.
GPSS runs the function or command(s) on job success and job failure. The default is null, no
command to run.
save_failing_batch: boolean
Determines whether or not GPSS saves data into a backup table before it writes the data to Tanzu
Greenplum. Saving the data in this manner aids recovery when GPSS encounters errors during the
evaluation of expressions. The default is fa1se; GPSS does not use a backup table, and returns
immediately when it encounters an expression error. When you set this property to true, GPSS
writes both the good and the bad data in the batch to a backup table named gpssbackup <jobhash>,
and continues to process incoming data. You must then manually load the good data from the
backup table into Greenplum or set recover failing batch (Beta)to true to have GPSS
automatically reload the good data.

234

Tanzu Greenplum Streaming Server

ﬁ Using a backup table to hedge against mapping errors may impact performance, especially
when the data that you are loading has not been cleaned.

recover_failing_batch: boolean (Beta)
When set to true and save failing batch is also true, GPSS automatically reloads the good
data in the batch and retains only the error data in the backup table. The default value is false;
GPSS does not process the backup table.

ﬁ Enabling this property requires that GPSS has the Tanzu Greenplum privileges to create a
function.

consistency: strong | at-least | at-most | none
Specify how GPSS should manage message offsets when it acts as a high-level Kafka consumer.
Valid values are strong, at-least, at-most, and none. The default value is strong. Refer to
Understanding Kafka Message Offset Management for more detailed information.

fallback_offset: earliest | latest
Specifies the behaviour of GPSS when it detects a Kafka message offset gap. When set to
earliest, GPSS automatically resumes a load operation from the earliest available published
message. When set to 1atest, GPSS loads only new messages to the Kafka topic. If this property
is not set, GPSS returns an error.

option: Properties

schedule:

Controls the frequency and interval of restarting jobs.

retry_interval: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

max_retries: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

running_duration: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

auto_stop_restart_interval: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
running duration.

max_restart_times: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
running duration. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

quit_at_eof after: clock_time

235

Tanzu Greenplum Streaming Server

The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

alert:

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

command: command_to_run
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB STATUS, and $GPSSJOB DETATL.

workdir: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

timeout: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (n), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<property>: {{<template var>}}
For example:
max retries: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, gpsscli load, Of gpkafka load
command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the load configuration file. For example, if you create a
table as follows:

236

Tanzu Greenplum Streaming Server

CREATE TABLE "MyTable" (cl text);
Your YAML configuration file would refer to the table name as:

targets:
- gpdb:
tables:
- table: '"MyTable"'

You can specify backslash escape sequences in the CSV delimiter, quote, and escape options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Kafka Properties

GPSS requires Kafka version 0.11 or newer for exactly-once delivery assurance. You can run with an older
version of Kafka (but lose the exactly-once guarantee) by adding the following rdkafka prop block to your
gpkafka-v3.yaml load configuration file:

rdkafka prop:
api.version.request: false

broker.version.fallback: 0.8.2.1

Examples

Load data from Kafka as defined in the Version 3 configuration file named 1oadfromkafka v3.yaml:

gpkafka load loadfromkafka v3.yaml

Example loadfromkafka v3.yaml configuration file:

version: v3
targets:
- gpdb:
host: mdw-1
port: 15432
user: gpadmin
password: changeme
database: testdb
work_schema: public
error_limit: 25
tables:
- table: tbl order_merge
schema: public
mode:

insert {}

mapping:
data: (value->>'data') ::text
o: (meta->>'offset')::bigint
p: (meta->>'partition')::int
pk: (value->>'pk')::int
ts: (meta->>'timestamp') ::bigint

237

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

sources:
- kafka:
topic: daily orders
brokers: localhost:9092
key content:
binary:
source_column_name: key
value content:
json:
column:
name: value
type: JSON

meta:
json:
column:
name: meta
type: JSON
task:

batch size:
interval ms: 5000
max_count: 1
window_size: 5
option:
schedule:

running duration: 2s

auto stop restart interval : 2s
max restart times : 1
See Also

gpkafka load, gpsscli submit, gpsscli load

gpkafka-v2.yaml

gpkafka configuration file (version 2).
Synopsis

DATABASE: <db_ name>
USER: <user_ name>
PASSWORD: <password>
HOST: <host>
PORT: <greenplum port>
VERSION: 2
KAFKA:
INPUT:
SOURCE :
BROKERS: <kafka broker_ host:broker port>
TOPIC: <kafka topic>
[PARTITIONS: (<partition_ numbers>)]
[FALLBACK_OFFSET: { earliest | latest }]
[VALUE:
COLUMNS :

- NAME: { <column name> | _ IGNORED

[/

}

Tanzu Greenplum Streaming Server

238

Tanzu Greenplum Streaming Server

TYPE: <column data type>
[... 1
FORMAT: <value data format>
[[DELIMITED OPTION:
DELIMITER: <delimiter string>
[EOL_PREFIX: <prefix string>]
[QUOTE: <quote_ char>]
[ESCAPE: <escape_char>]] |
[AVRO_OPTION:
[SCHEMA_REGISTRY_ADDR: <http://schemareg_host:schemareg_port> [,
[SCHEMA CA ON_GPDB: <sr_ca_file path>]
[SCHEMA CERT_ON_GPDB: <sr_cert file path>]
[SCHEMA KEY ON GPDB: <sr_key file path>]
[SCHEMA MIN TLS VERSION: <minimum version>]
[SCHEMA PATH ON_GPDB: <path_to_file>]r
[BYTES TO BASE64: <boolean>]] |
[CSV_OPTION:
[DELIMITER: <delim char>]
[QUOTE: <quote char>]
[NULL STRING: <nullstr val>]
[ESCAPE: <escape char>]
[FORCE NOT NULL: <columns>]
[FILL MISSING FIELDS: <boolean>]] |
[JSONL OPTION:
[NEWLINE: <newline str>]] |
[CUSTOM OPTION:
NAME: <udf name>
PARAMSTR: <udf parameter string>]]
[KEY:
COLUMNS:
- NAME: { <column_ name> | _ IGNORED _ }
TYPE: <column_data_ type>
[coo 1
FORMAT: <key data_ format>
[[DELIMITED_OPTION:
DELIMITER: <delimiter_ string> |
[EOL_PREFIX: <prefix string>]
[QUOTE: <quote_char>]
[ESCAPE: <escape_char>]] |
[AVRO_OPTION:
[SCHEMA REGISTRY ADDR: <http://schemareg host:schemareg port> [,
[SCHEMA CA ON GPDB: <sr ca file path>]
[SCHEMA CERT ON GPDB: <sr cert file path>]
[SCHEMA KEY ON GPDB: <sr key file path>]
[SCHEMA MIN TLS VERSION: <minimum version>]
[SCHEMA PATH ON GPDB: <path to file>]
[BYTES TO BASE64: <boolean>]] |
[CSV_OPTION:
[DELIMITER: <delim char>]
[QUOTE: <quote_ char>]
[NULL STRING: <nullstr val>]
[ESCAPE: <escape_ char>]
[FORCE_NOT NULL: <columns>]
[FILL MISSING _FIELDS: <boolean>] |
[CUSTOM OPTION:
NAME: <udf name>
PARAMSTR: <udf_ parameter_ string>]]
[META:
COLUMNS :

239

Tanzu Greenplum Streaming Server

- NAME: <meta_column_name>
TYPE: { json | jsonb }
FORMAT: json]
[TRANSFORMER:
PATH: <path to plugin transform library>
ON_INIT: <plugin transform init name>
TRANSFORM: <plugin_ transform name>
PROPERTIES:
<plugin_transform property name>: <property value>
L ... 11
[FILTER: <filter string>]
[ENCODING: <char_set>]
[ERROR_LIMIT: { <num_errors> | <percentage errors> }]
{ OUTPUT:
[SCHEMA: <output_schema_name>]
TABLE: <table_ name>
[FILTER: <output filter string>]
[MODE: <mode>]
[MATCH_COLUMNS:
- <match_column_name>
[... 1]
[ORDER COLUMNS:
- <order_column_name>
[... 1]
[UPDATE COLUMNS:
- <update_column_name>
[... 1]
[UPDATE CONDITION: <update condition>]
[DELETE CONDITION: <delete condition>]
[TRANSFORMER:
TRANSFORM: <udf transform udf name>
PROPERTIES:
<udf transform property name>: <property value>
[coo 1
COLUMNS :
- <udf_transform_column_name>

L ... 11

[MAPPING:
- NAME: <target_column_name>
EXPRESSION: { <source_column_name> | <expression> }
[coo]
I
<target column name> : { <source column name> | <expression> }

L. 11|
OUTPUTS:
- TABLE: <table name>
[MODE: <mode>]
[MATCH COLUMNS:
- <match_column_name>
[coo 11
[ORDER_COLUMNS:
- <order column_name>
[... 1]
[UPDATE_ COLUMNS:
- <update column_name>
[... 11
[UPDATE CONDITION: <update condition>]
[DELETE _CONDITION: <delete condition>]
[TRANSFORMER:

240

Tanzu Greenplum Streaming Server

TRANSFORM: <udf transform udf name>

PROPERTIES:
<udf transform property name>: <property value>
[...

COLUMNS :
- <udf_transform_ column_name>
[... 11

[MAPPING:
- NAME: <target_ column_name>

EXPRESSION: { <source_column_name> <expression> }
[coo 1
\
<target_ column_name> : { <source_column_name> | <expression> }
L ... 11
[...1 1}
[METADATA:
[SCHEMA: <metadata_schema_ name>]]
COMMIT:

SAVE_FAILING_BATCH: <boolean>
RECOVER_FAILING_BATCH: <boolean> (Beta)
MAX ROW: <num rows>
MINIMAL INTERVAL: <wait time>
CONSISTENCY: { strong | at-least | at-most | none }
IDLE DURATION: <idle time>

[POLL:
BATCHSIZE: <num_records>
TIMEOUT: <poll time>]

[TASK:
POST_BATCH_SQL: <udf_or_sqgl_to_run>
BATCH INTERVAL: <num_batches>
PREPARE_SQL: <udf or sql to_run>
TEARDOWN_ SQL: <udf_ or sql to_run>]

[PROPERTIES:
<kafka_ property name>: <kafka property value>
[... 1]

[SCHEDULE:

RETRY INTERVAL: <retry time>

MAX RETRIES: <num_retries>

RUNNING DURATION: <run_time>

AUTO_STOP_RESTART_INTERVAL: <restart time>

MAX RESTART TIMES: <num_restarts>

QUIT_AT_EOF_AFTER: <clock_time>]

[ALERT:

COMMAND: <command_to_run>

WORKDIR: <directory>

TIMEOUT: <alert time>]

Where you may specify any property value with a template variable that GPSS substitutes at runtime using
the following syntax:

<PROPERTY:> {{<template var>}}

Description

You specify load configuration parameters for the gpssc1li and gpkafka utilities in a YAML-formatted
configuration file. (This reference page uses the name gpkafka.yaml when referring to this file; you may

241

Tanzu Greenplum Streaming Server

choose your own name for the file.) Load parameters include VMware Tanzu Greenplum connection and
target table information, Kafka broker and topic information, and error and commit thresholds.

ﬁ Version 2 of the gpkafka.yaml configuration file syntax supports key and vaALUE blocks.
Version 1 does not.

The gpsscli and gpkafka utilities process the YAML configuration file in order, using indentation (spaces)
to determine the document hierarchy and the relationships between the sections. The use of white space in
the file is significant, and keywords are case-sensitive.

Keywords and Values
Tanzu Greenplum Options

DATABASE: db_name
The name of the Tanzu Greenplum.
USER: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the VMware Tanzu Greenplum Streaming Server documentation.
PASSWORD: password
The password for the Tanzu Greenplum user/role.
HOST: host
The host name or IP address of the Tanzu Greenplum coordinator host.
PORT: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.
VERSION: 2
The version of the configuration file. You must specify VERsTON: 2 when you configure VALUE and/or
KEY blocks in the file.

KAFKA:INPUT: Options

SOURCE

Kafka input configuration parameters.

BROKERS: kafka_broker_host:broker_port
The host and port identifying the Kafka broker.

TOPIC: kafka_topic
The name of the Kafka topic from which to load data. The topic must exist.

PARTITIONS: (partition_numbers)
A single, a comma-separated list, and/or a range of partition numbers from which GPSS reads
messages from the Kafka topic. A range that you specify with the M. . . N syntax includes both
the range start and end values. By default, GPSS reads messages from all partitions of the
Kafka topic.

n Ensure that you do not configure multiple jobs that specify overlapping partition

242

Tanzu Greenplum Streaming Server

numbers in the same topic; GPSS behavior is undefined.

FALLBACK_OFFSET: { earliest | latest }
Specifies the behaviour of GPSS when it detects a Kafka message offset gap. When set to
earliest, GPSS automatically resumes a load operation from the earliest available published
message. When set to 1atest, GPSS loads only new messages to the Kafka topic. If this
property is not set, GPSS returns an error.

VALUE:

KEY:

The Kafka message value field names, data types, and format. You must specify all Kafka data
elements in the order in which they appear in the Kafka message. Optional when you specify a key
block; GPSS ignores the Kafka message value in this circumstance.

The Kafka message key field names, data types, and format. You must specify all Kafka key
elements in the order in which they appear in the Kafka message. Optional when you specify a
vALUE block; GPSS ignores the Kafka message key in this circumstance.

COLUMNS:NAME: column_name

The name of a key or value column. column_name must match the column name of the target Tanzu
Greenplum table. Specify 16NORED to omit this Kafka message data element from the load
operation.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined
in COLUMNS : NAME With a column name in the target Tanzu Greenplum TABLE. You can override the
default mapping by specifying a MAPPING block.

COLUMNS:TYPE: data_type

The data type of the column. You must specify an equivalent data type for each non-ignored Kafka
message data element and the associated Tanzu Greenplum table column.

FORMAT: data_format

The format of the Kafka message key or value data. You may specify a FORMAT Of avro, binary,
csv, custom, delimited, json, or jsonl for the key and value, with some restrictions.

avro
When you specify the avro data format, you must define only a single 4 son type column in
corumns. If the Kafka message key or value schema is registered in a Confluent Schema
Registry, you must also provide the AvrRO OPTION.

binary
When you specify the binary data format, you must define only a single bytea type column
in COLUMNS.

csv
When you specify the csv data format, the message content cannot contain line ending
characters (CR and LF).

You must not provide a vaLUE block when you specify csv format for a key block. Similarly, you
must not provide a kEY block when you specify csv format for a vaL.ut block.

custom
When you specify the custom data format, you must provide a cusToM OPTION.
delimited

243

Tanzu Greenplum Streaming Server

When you specify the delimited data format, you must provide a DELIMITED OPTION.
json
When you specify the json data format, you must define only a single §son type column in
COLUMNS.
jsonl
When you specify the jsonl data format, you may provide a gsonL_opT10N to define a
newline character.

AVRO_OPTION

Optional. When you specify avro as the ForvaT, you may provide avro opT1ONS that identify a
schema registry location and optional SSL certificates and keys, and whether or not you want GPSS
to convert Avro bytes fields into base64-encoded strings.

SCHEMA_REGISTRY_ADDR: schemareg_host:schemareg_port
When you specify FORMAT: avro and the Avro schema of the JSON data you want to load is
registered in the Confluent Schema Registry, you must identify the host name and port
number of each Confluent Schema Registry server in your Kafka cluster. You may specify
more than one address, and at least one of the addresses must be legal.

SCHEMA_CA _ON_GPDB: sr_ca_file_path
The file system path to the CA certificate that GPSS uses to verify the peer. This file must
reside in sr_ca_file_path on all Tanzu Greenplum segment hosts.

SCHEMA_CERT_ON_GPDB: sr_cert_file_path
The file system path to the client certificate that GPSS uses to connect to the HTTPS
schema registry. This file must reside in sr_cert_file_path on all Tanzu Greenplum segment
hosts.

SCHEMA_KEY_ON_GPDB: sr_key file_path
The file system path to the private key file that GPSS uses to connect to the HTTPS schema
registry. This file must reside in sr_key file_path on all Tanzu Greenplum segment hosts.

SCHEMA_MIN_TLS_VERSION: minimum_version
The minimum transport layer security (TLS) version that GPSS requests on the connection to
the schema registry. Supported versions are 1.0, 1.1, 1.2, or 1.3. The default minimum TLS
version is 1.0.

SCHEMA_PATH_ON_GPDB: path_to_file
When you specify the avro format and the Avro schema of the JSON key or value data that
you want to load is specified in a separate . avsc file, you must identify the file system
location in path_to _file, and the file must reside in this location on every Tanzu Greenplum
segment host.

n GPSS does not cache the schema. GPSS must reload the schema for every batch
of Kafka data. Also, GPSS supports providing the schema for either the key or the
value, but not both.

BYTES_TO_BASEG64: boolean
When true, GPSS converts Avro bytes fields into base64-encoded strings. The default value
is false, GPSS does not perform the conversion.

CSV_OPTION

244

Tanzu Greenplum Streaming Server

When you specify FORMAT: csv, you may provide the following options:

DELIMITER: delim_char
Specifies a single ASCII character that separates columns within each message or row of
data. The default delimiter is a comma ().

QUOTE: quote_char
Specifies the quotation character. Because GPSS does not provide a default value for this
property, you must specify a value.

NULL_STRING: nullstr_val
Specifies the string that represents the null value. Because GPSS does not specify a default
value for this property, you must specify a value.

ESCAPE: escape_char
Specifies the single character that is used for escaping data characters in the content that
might otherwise be interpreted as row or column delimiters. Make sure to choose an escape
character that is not used anywhere in your actual column data. Because GPSS does not
provide a default value for this property. you must specify a value.

FORCE_NOT_NULL: columns
Specifies a comma-separated list of column names to process as though each column were
quoted and hence not a NULL value. For the default nul1l string (nothing between two
delimiters), missing values are evaluated as zero-length strings.

FILL MISSING_FIELDS: boolean
Specifies the action of GPSS when it reads a row of data that has missing trailing field values
(the row has missing data fields at the end of a line or row). The default value is false, GPSS
returns an error when it encounters a row with missing trailing field values.
If set to true, GPSS sets missing trailing field values to nuLL. Blank rows, fields with a noT
NULL constraint, and trailing delimiters on a line will still generate an error.

JSONL_OPTION

Optional. When you specify FORMAT: jsonl, you may choose to provide the JSONL OPTION
properties.

NEWLINE: newline_str

A string that specifies the new line character(s) that end each JSON record. The default
newline is "\n".

CUSTOM_OPTION

Optional. When you specify FORMAT: custom, you are required to provide the cusToM OPTION
properties. This block identifies the name and the arguments of a custom formatter user-defined
function.

NAME: udf name
The name of the custom formatter user-defined function.
PARAMSTR: udf_parameter_string

A string specifying the comma-separated list of arguments to pass to the custom formatter
user-defined function.

DELIMITED_OPTION

245

Tanzu Greenplum Streaming Server

Optional. When you specify FORMAT: delimited, you may choose to provide the

DELIMITER OPTION properties.

DELIMITER: delimiter_string
When you specify the delimited format, delimiter_string is required and must identify the
data element delimiter. delimiter_string may be a multi-byte value, and up to 32 bytes in
length. It may not contain quote and escape characters.

EOL_PREFIX: prefix_string
Specifies the prefix before the end of line character (\n) that indicates the end of a row. The
default prefix is empty.

QUOTE: quote_char
Specifies the single ASCII quotation character. The default quote character is empty.
If you do not specify a quotation character, GPSS assumes that all columns are unquoted. If
you do not specify a quotation character and do specify an escape character, GPSS assumes
that all columns are unquoted and escapes the delimiter, end-of-line prefix, and escape itself.
When you specify a quotation character, you must specify an escape character. GPSS reads
any content between quote characters as-is, except for escaped characters.

ESCAPE: escape_char
Specifies the single ASCII character used to escape special characters (for example, the
delimiter, end-of-line prefix, quote, or escape itself). Therdefault escape character is empty.
When you specify an escape character and do not specify a quotation character, GPSS
escapes only the delimiter, end-of-line prefix, and escape itself.
When you specify both an escape character and a quotation character, GPSS escapes only
these characters.

META:

The field name, type, and format of the Kafka meta data. META must specify a single json or jsonb
(Greenplum 6 only) type column and FORMAT: json. The available Kafka meta data properties
include:

e topic (text) - the Kafka topic name

e partition (int) - the partition number

o offset (bigint) - the record location within the partition

e timestamp (bigint) - the time that the message was appended to the Kafka log

You can load any of these properties into the target table with a MaPPING, or use a property in the
update or merge criteria for a load operation.

TRANSFORMER:

Input data transform block. An input data transformer is a plugin, a set of go functions that transform
the data after it is read from the source. The semantics of the transform are function-specific. You
specify the library and function names in this block, as well as the properties that GPSS passes to
these functions:

PATH: path_to_plugin_transform_library
The file system location of the plugin transformer library on the Tanzu Greenplum streaming
server server host.

246

Tanzu Greenplum Streaming Server

ONL_INIT: plugin_transform_init_name
The name of an initialization function that GPSS calls when it loads the transform library.
TRANSFORM: plugin_transform_name
The name of the transform function. GPSS invokes this function for every message it reads.
PROPERTIES: plugin_transform_property _name: property_value
One or more property name and value pairs that GPSS passes to plugin_transform_init_name
and plugin_transform_name.
FILTER: filter_string
The filter to apply to the Kafka input messages before GPSS loads the data into Tanzu Greenplum.
If the filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the
message is dropped. filter_string must be a valid SQL conditional expression and may reference one
or more KEY, VALUE, Or META column names.
ENCODING: char_set
The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, Or json format. GPSS supports the character sets identified in Character
Set Support in the Tanzu Greenplum documentation.
ERROR_LIMIT: { num_errors | percentage_errors }
The error threshold, specified as either an absolute number or a percentage. gpkafka load exits
when this limit is reached. The default ErrOR LIMIT is zero; GPSS deactivates error logging and
stops the load operation when it encounters the first error. Due to a limitation of the Tanzu Greenplum
external table framework, GPSS does not accept ERROR LIMIT: 1.

KAFKA:OUTPUT: Options
ﬁ You must specify only one of the ouTpuT or ouTrpUTs blocks. You cannot specify both.

SCHEMA: output_schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.

TABLE: table_name
The name of the Tanzu Greenplum table into which GPSS loads the Kafka data.

FILTER: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. output_filter_string must be a valid SQL conditional expression and may reference one or
more META Or VALUE column names.

MODE: mode

The table load mode. Valid mode values are INSERT, MERGE, or UPDATE. The default value is INSERT.

UPDATE - Updates the target table columns that are listed in upDATE corLuMns when the input
columns identified in MaTCH corumns match the named target table columns and the optional
UPDATE CONDITION i$ true.

UPDATE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MERGE - Inserts new rows and updates existing rows when:

247

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

Tanzu Greenplum Streaming Server

e columns are listed in UPDATE COLUMNS,
e themaTcH corLumns target table column values are equal to the input data, and
e an optional UPDATE CONDITION is specified and met.

Deletes rows when:

e themaTcH corLumns target table column values are equal to the input data, and
e an optional DELETE CONDITION is specified and met.

New rows are identified when the MaTcr corumns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the
source file is inserted, not only the MaTCcH corumns and UPDATE coLuMNs. If there are multiple new
MATCH COLUMNS values in the input data that are the same, GPSS inserts or updates the target table
using a random matching input row. When you specify orDER corumns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.
MERGE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MATCH_COLUMNS:

Required if MODE is MERGE OF UPDATE.

match_column_name
Specifies the column(s) to use as the join condition for the update. The attribute value in the
specified target column(s) must be equal to that of the corresponding source data column(s)
in order for the row to be updated in the target table.

ORDER_COLUMNS:

Optional. May be specified in MERGE MODE to sort the input data rows.

order_column_name
Specify the column(s) by which GPSS sorts the rows. When multiple matching rows exist in a
batch, orDER corumns is used with MaTcH corumMns to determine the input row with the largest
value; GPSS uses that row to write/update the target.

UPDATE_COLUMNS:

Required if MODE is MERGE OF UPDATE.

update_column_name
Specifies the column(s) to update for the rows that meet the maTcu corumns criteria and the

optional UPDATE CONDITION.

UPDATE_CONDITION: update_condition
Optional. Specifies a boolean condition, similar to that which you would declare in a wHERE clause,
that must be met in order for a row in the target table to be updated (or inserted, in the case of a
MERGE).

DELETE_CONDITION: delete_condition
Optional. In MERGE MODE, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the

MATCH COLUMNS criteria.

248

Tanzu Greenplum Streaming Server

TRANSFORMER:

Optional. Output data transform block. An output data transformer is a user-defined function (UDF)
that transforms the data before it is loaded into Tanzu Greenplum. The semantics of the UDF are
transform-specific.

ﬁ GPSS currently supports specifying only one of the MapPING or (UDF) TRANSFORMER
blocks in the load configuration file, not both.

TRANSFORM: udf_transform_udf name
The name of the output transform UDF. GPSS invokes this function for every batch of data it
writes to Tanzu Greenplum.
PROPERTIES: udf_transform_property _name: property_value
One or more property name and value pairs that GPSS passes to udf_transform_udf _name.
COLUMNS: udf_transform_column_name
The name of one or more columns involved in the transform.

MAPPING:
Optional. Overrides the default source-to-target column mapping. GPSS supports two mapping
syntaxes.
ﬁ GPSS currently supports specifying only one of the MapPING or (UDF) TRANSFORMER
blocks in the load configuration file, not both.
ﬁ When you specify a MAPPTNG, ensure that you provide a mapping for all Kafka

message key and value elements of interest. GPSS does not automatically match
column names when you provide a MAPPING.

NAME: target_column_name
Specifies the target Tanzu Greenplum table column name.

EXPRESSION: { source_column_name | expression }
Specifies a Kafka corumns : NaME (source_column_name) or an expression. When you specify
an expression, you may provide a value expression that you would specify in the seLEcT list
of a query, such as a constant value, a column reference, an operator invocation, a built-in or
user-defined function call, and so on.

target_column_name: { source_column_name | expression }
When you use this MmaAPPING syntax, specify the target_column_name and
{source_column_name | expression} as described above.

KAFKA:OUTPUTS: Options

ﬁ You must specify only one of the ouTpuT or ouTpuTs blocks. You cannot specify both.

249

Tanzu Greenplum Streaming Server

TABLE: table_name

The name of a Tanzu Greenplum table into which GPSS loads the Kafka data.
other options

As specified in the KAFKA:OUTPUT: Options section.

KAFKA:METADATA: Options

SCHEMA: metadata_schema name
The name of the Tanzu Greenplum schema in which GPSS creates external and history tables. The
default metadata_schema_name is KAFKA: OUTPUT : SCHEMA.

Tanzu Greenplum COMMIT: Options

COMMIT:

Controls how gpkafka load commits a batch of data to Tanzu Greenplum. You may specify both
MAX ROW and MINIMAL INTERVAL as long as both values are not zero (0). Try setting and tuning
MINIMAL INTERVAL to your environment; introduce a Max row setting only if you encounter high
memory usage associated with message buffering.

SAVE_FAILING_BATCH: boolean

Determines whether or not GPSS saves data into a backup table before it writes the data to
Tanzu Greenplum. Saving the data in this manner aids recovery when GPSS encounters
errors during the evaluation of expressions. The default is false; GPSS does not use a
backup table, and returns immediately when it encounters an expression error. When you set
this property to true, GPSS writes both the good and the bad data in the batch to a backup
table named gpssbackup <jobhash>, and continues to process incoming Kafka messages.
You must then manually load the good data from the backup table into Greenplum or set
RECOVER FAILING BATCH (Beta) to true to have GPSS automatically reload the good data.

ﬁ Using a backup table to hedge against mapping errors may impact
performance, especially when the data that you are loading has not been
cleaned.

RECOVER_FAILING_BATCH: boolean (Beta)
When set to true and sAaVE FAILING BATCH is also true, GPSS automatically reloads the
good data in the batch and retains only the error data in the backup table. The default value is
false; GPSS does not process the backup table.

ﬁ Enabling this property requires that GPSS has the Tanzu Greenplum
privileges to create a function.

MAX_ROW: number_of rows
The number of rows to batch before triggering an TNSERT operation on the Tanzu Greenplum
table. The default value of Max Rrow is 0, which instructs GPSS to ignore this commit trigger
condition.

250

Tanzu Greenplum Streaming Server

MINIMAL_INTERVAL: wait_time
The minimum amount of time to wait (milliseconds) between each TNSERT operation on the
table. The default value is 5000.
CONSISTENCY: { strong | at-least | at-most | none }
Specify how GPSS should manage message offsets when it acts as a high-level consumer.
Valid values are strong, at-least, at-most, and none. The default value is strong. Refer to
Understanding Kafka Message Offset Management for more detailed information.
IDLE_DURATION: idle_time

The maximum amount of time to wait (milliseconds) for the first batch of Kafka data. When
you use this property to enable lazy load, GPSS waits until Kafka data is available before
locking the target Greenplum table. You can specify:

e 0 (lazy load is deactivates)
e -1 (lazy load is activated, the job never stops), or

e apositive value (lazy load is activated, the job stops after idle_time duration of no
data in the Kafka topic) The default value is o.

Kafka POLL: Options
ﬁ The poLL properties are deprecated and ignored by GPSS.

POLL:

Controls the polling time period and batch size when reading Kafka data.

BATCHSIZE: num_records
The number of Kafka records in a batch. saTcusIzE should be smaller than coMMIT: MAX ROW.
The default batch size is 200.

TIMEOUT: poll_time
The maximum time, in milliseconds, to wait in a polling cycle if Kafka data is not available.
You must specify a TTMEOUT greater than 100 milliseconds and less than
COMMIT:MINIMAL INTERVAL. The default poll timeout is 1000 milliseconds.

Tanzu Greenplum TASK: Options

TASK:

Controls the execution and scheduling of a periodic (maintenance) task.

POST_BATCH_SQL: udf_or_sql_to_run
The user-defined function or SQL command(s) that you want to run after the specified number
of batches are read from Kafka. The default is null.

BATCH_INTERVAL: num_batches
The number of batches to read before running udf_or_sql_to_run. The default batch interval is
0.

PREPARE_SQL: udf or sqgl to run
The user-defined function or SQL command(s) that you want GPSS to run before it executes
the job. The default is null, no command to run.

251

Tanzu Greenplum Streaming Server

TEARDOWN_SQL: udf or_sql_to run
The user-defined function or SQL command(s) that you want GPSS to run after the job stops.
GPSS runs the function or command(s) on job success and job failure. The default is null, no
command to run.

Kafka PROPERTIES: Options

PROPERTIES:

Kafka consumer configuration property names and values.

kafka_property_name

The name of a Kafka property.
kafka_property _value

The Kafka property value.

Job SCHEDULE: Options

SCHEDULE:

Controls the frequency and interval of restarting jobs.

RETRY_INTERVAL: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

MAX_RETRIES: num_retries
The maximum number of times GPSS attempts to retry a failed job. The default is 0, do not
retry. If you specify a negative value, GPSS retries the job indefinitely.

RUNNING_DURATION: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

AUTO_STOP_RESTART_INTERVAL: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
RUNNING DURATION.

MAX_RESTART_TIMES: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
RUNNING DURATION. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

QUIT_AT_EOF_AFTER: clock_time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

Job ALERT: Options

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

COMMAND: command_to_run

252

Tanzu Greenplum Streaming Server

The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB STATUS, and $GPSSJOB_DETAIL.

WORKDIR: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

TIMEOUT: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (1), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<PROPERTY>: {{<template_var>}}
For example:
MAX RETRIES: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, gpsscli load, OF gpkafka load
command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the gpkafka.yaml configuration file. For example, if you
create a table as follows:

CREATE TABLE "MyTable" ("MyColumn" text);
Your gpkafka.yaml YAML configuration file would refer to the above table and column names as:

COLUMNS :
- name: '"MyColumn"'

type: text

253

Tanzu Greenplum Streaming Server

OUTPUT:
TABLE: '"MyTable"'

GPSS requires Kafka version 0.11 or newer for exactly-once delivery assurance. You can run with an older
version of Kafka (but lose the exactly-once guarantee) by adding the following ProPERTTES block to your
gpkafka-v2.yaml load configuration file:

PROPERTIES:
api.version.request: false

broker.version.fallback: 0.8.2.1

You can specify backslash escape sequences in the CSV DELIMITER, QUOTE, and ESCAPE options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

Load data from Kafka as defined in the Version 2 configuration file named kafka2greenplumv2.yaml:
gpkafka load kafka2greenplumv2.yaml

Example kafka2greenplumv?2.yaml configuration file:

DATABASE: ops
USER: gpadmin
HOST: mdw-1
PORT: 5432
VERSION: 2
KAFKA:
INPUT:
SOURCE:
BROKERS: kbrokerhost1:9092
TOPIC: customer expenses2
PARTITIONS: (2, 5...7, 13)
VALUE:
COLUMNS:
- NAME: cl
TYPE: Jjson
FORMAT: avro
AVRO_OPTION:
SCHEMA REGISTRY ADDR: http://localhost:8081
KEY:
COLUMNS :
- NAME: key
TYPE: Jjson
FORMAT: avro
AVRO_OPTION:
SCHEMA_REGISTRY_ADDR: http://localhost:8081
META:
COLUMNS:
- NAME: meta
TYPE: json
FORMAT: json
ERROR_LIMIT: 25

254

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

OUTPUT:
SCHEMA: payables
TABLE: expenses2

MAPPING:
- NAME: customer_id
EXPRESSION: (cl->>'cust_id')::int

- NAME: newcust

EXPRESSION: ((cl->>'cust id')::int > 5000000) ::boolean

- NAME: expenses
EXPRESSION: (cl->>'expenses')::decimal
- NAME: tax_ due

EXPRESSION: ((cl->>'expenses')::decimal * .075)::decimal
- NAME: t
EXPRESSION: (meta->>'topic')::text
METADATA:
SCHEMA: gpkafka internal

COMMIT:
MINIMAL INTERVAL: 2000

See Also

Tanzu Greenplum Streaming Server

Loading Avro Data from Kafka, gpkafka.yaml, gpkafka load, gpsscli load, gpsscli submit

gpkafka.yaml

gpkafka configuration file (version 1).
Synopsis

DATABASE: <db_ name>
USER: <user_name>
PASSWORD: <password>
HOST: <host>
PORT: <greenplum port>
[VERSION: 1]
KAFKA:
INPUT:
SOURCE :
BROKERS: <kafka broker host:broker port> [, ...]
TOPIC: <kafka topic>
[COLUMNS:
- NAME: { <column_name> | __ IGNORED _ }
TYPE: <column data_ type>
... 1]
FORMAT: <data format>
[[DELIMITED OPTION:
DELIMITER: <delimiter_ string>] |
[AVRO_OPTION:

[SCHEMA REGISTRY ADDR: <http://schemareg host:schemareg port> [, ... 1]

[BYTES _TO BASE64: <boolean>]] |
[CUSTOM_OPTION:

NAME: <udf_ name>

PARAMSTR: <udf parameter_string>]]
[FILTER: <filter string>]

[ERROR _LIMIT: { <num errors> | <percentage errors> }]

255

Tanzu Greenplum Streaming Server

OUTPUT:
[SCHEMA: <output schema name>]
TABLE: <table name>
[MODE: <mode>]
[MATCH_ COLUMNS:
- <match_ column_name>
[... 11
[ORDER_COLUMNS :
- <order_column_name>
[... 11
[UPDATE_COLUMNS:
- <update_column_name>
L ... 11
[UPDATE CONDITION: <update condition>]
[DELETE _CONDITION: <delete condition>]

[MAPPING:
- NAME: <target_column_name>
EXPRESSION: { <source_column_name> | <expression> }
[coo]
I
<target column name> : { <source column name> | <expression> }
[coo 1 1
[METADATA:

[SCHEMA: <metadata schema name>]]
COMMIT :

MAX ROW: <num_rows>

MINIMAL INTERVAL: <wait time>
[POLL:

BATCHSIZE: <num_records>

TIMEOUT: <poll time>]
[TASK:

POST_BATCH_SQL: <udf or sqgl to_run>

BATCH_INTERVAL: <num_batches>]

[PROPERTIES:
<kafka_ property name>: <kafka property value>

[... 1]
Description

Kl

The gpkafka.yaml Version 1 configuration file format is deprecated and may be removed

in a future release. Use the version 2 or version 3 configuration file format to configure a
Kafka load job.

You specify load configuration parameters for the gpkafka utilities in a YAML-formatted configuration file.
(This reference page uses the name gpkafka.yaml when referring to this file; you may choose your own
name for the file.) Load parameters include VMware Tanzu Greenplum connection and target table
information, Kafka broker and topic information, and error and commit thresholds.

Version 1 of the gpkafka.yaml configuration file syntax does not support kv and VALUE
blocks.

256

Tanzu Greenplum Streaming Server

The gpkafka utility processes the YAML configuration file in order, using indentation (spaces) to determine
the document hierarchy and the relationships between the sections. The use of white space in the file is
significant, and keywords are case-sensitive.

Keywords and Values

Tanzu Greenplum Connection Options

DATABASE: db_name
The name of the Tanzu Greenplum.
USER: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the VMware Tanzu Greenplum Streaming Server documentation.
PASSWORD: password
The password for the Tanzu Greenplum user/role.
HOST: host
The host name or IP address of the Tanzu Greenplum coordinator host.
PORT: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.
VERSION: 1
Optional. The version of the load configuration file. The default version is Version 1.

KAFKA:INPUT: Options

SOURCE

Kafka input configuration parameters.

BROKERS: kafka_broker_host:broker_port
The host and port identifying the Kafka broker.
TOPIC: kafka_topic
The name of the Kafka topic from which to load data. The topic must exist.

COLUMNS:

The column names and data types. You must specify all Kafka data elements in the order in which
they appear in the Kafka message. Optional when the column names and types match the target
VMware Greenplum table definition.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined
in coLuMNs : NaME with a column name in the target Tanzu Greenplum TaBLE. You can override the
default mapping by specifying a MAPPING block.

NAME: column_name
The name of a column. column_name must match the column name of the target Tanzu
Greenplum table. Specify 1GNORED to omit this Kafka message data element from the
load operation.

TYPE: data_type
The data type of the column. You must specify an equivalent data type for each non-ignored
Kafka message data element and the associated Tanzu Greenplum table column.

257

Tanzu Greenplum Streaming Server

FORMAT: data_format

The format of the Kafka message value data. You may specify a FORMAT of avro, binary, csv,

custom, delimited, Or json.

avro
When you specify the avro data format, you must define only a single 5son type column in
corumns. If the Kafka message value schema is registered in a Confluent Schema Registry,
you must also provide the AvRO OPTION.

binary
When you specify the binary data format, you must define only a single bytea type column
in COLUMNS.

csv

When you specify the csv data format, the message content cannot contain line ending
characters (CR and LF).
custom
When you specify the custom data format, you must provide a cusToM OPTION.
delimited
When you specify the delimited data format, you must provide a DELIMITED OPTION.
json
When you specify the json data format, you must define only a single §son type column in
COLUMNS.

AVRO_OPTION

Optional. When you specify avro as the ForvAT, you may provide avro opTIONS that identify a
schema registry location and whether or not you want GPSS to convert Avro bytes fields into
base64-encoded strings.

SCHEMA_REGISTRY_ADDR: http://schemareg_host:schemareg_port
Optional. When you specify avro as the ForvaT and the Avro schema of the JSON data you
want to load is registered in the Confluent Schema Registry, you must identify the host name
and port number of each Confluent Schema Registry server in your Kafka cluster. You may
specify more than one address, and at least one of the addresses must be legal.
BYTES_TO_BASE®64: boolean
When true, GPSS converts Avro bytes fields into base64-encoded strings. The default value
is false, GPSS does not perform the conversion.

CUSTOM_OPTION

Optional. When you specify custom as the FOrRVMAT, cusTOoM OPTION is required. This block identifies
the name and the arguments of a custom formatter user-defined function.

NAME: udf name
The name of the custom formatter user-defined function.

PARAMSTR: udf_parameter_string
A string specifying the comma-separated list of arguments to pass to the custom formatter
user-defined function.

DELIMITED_OPTION:DELIMITER: delimiter_string

258

Tanzu Greenplum Streaming Server

Optional. When you specify delimited as the rForvAT, delimiter_string is required and must identify
the Kafka message data element delimiter. delimiter_string may be a multi-byte value, and up to 32
bytes in length. It may not contain quote and escape characters.

FILTER: filter_string
The filter to apply to the Kafka input messages before GPSS loads the data into Tanzu Greenplum.
If the filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the
message is dropped. filter_string must be a valid SQL conditional expression and may reference one
or more COLUMNS Names.

ERROR_LIMIT: { num_errors | percentage_errors }
The error threshold, specified as either an absolute number or a percentage. gpkafka load exits
when this limit is reached. The default ErrOrR LIMIT is zero; GPSS deactivates error logging, and
stops the load operation when it encounters the first error. Due to a limitation of the Tanzu Greenplum
external table framework, GPSS does not accept ERROR LIMIT: 1.

KAFKA:OUTPUT: Options

SCHEMA: output_schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.

TABLE: table_name
The name of the Tanzu Greenplum table into which GPSS loads the Kafka data.

MODE: mode

The table load mode. Valid mode values are INSERT, MERGE, Oor UPDATE. The default value is INSERT.

UPDATE - Updates the target table columns that are listed in upDATE corLuMns when the input
columns identified in MaTCH corumns match the named target table columns and the optional
UPDATE CONDITION is true.

UPDATE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MERGE - Inserts new rows and updates existing rows when:
e columns are listed in UPDATE COLUMNS,
e themaTcH coLumns target table column values are equal to the input data, and
e an optional UPDATE CONDITION is specified and met.

Deletes rows when:
e themaTcH corumns target table column values are equal to the input data, and
e an optional DELETE CONDITION is specified and met.

New rows are identified when the MaTcr corumns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the
source file is inserted, not only the MaTcH corumns and UpDATE coLuMns. If there are multiple new
MATCH COLUMNS values in the input data that are the same, GPSS inserts or updates the target table
using a random matching input row. When you specify orDER corumns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.

259

Tanzu Greenplum Streaming Server

MERGE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.
MATCH_COLUMNS:

Required if MODE is MERGE OF UPDATE.

match_column_name
Specifies the column(s) to use as the join condition for the update. The attribute value in the

specified target column(s) must be equal to that of the corresponding source data column(s)

in order for the row to be updated in the target table.

ORDER_COLUMNS:
Optional. May be specified in MERGE MODE to sort the input data rows.

order_column_name
Specify the column(s) by which GPSS sorts the rows. When multiple matching rows exist in a

batch, orDER corumns is used with MaTcH corumMns to determine the input row with the largest

value; GPSS uses that row to write/update the target.

UPDATE_COLUMNS:

Required if MODE is MERGE OF UPDATE.

update_column_name
Specifies the column(s) to update for the rows that meet the vaTcH corumns criteria and the

optional UPDATE CONDITION.

UPDATE_CONDITION: update_condition
Optional. Specifies a boolean condition, similar to that which you would declare in a wHERE clause,

that must be met in order for a row in the target table to be updated (or inserted, in the case of a

MERGE).

DELETE_CONDITION: delete_condition
Optional. In MERGE MODE, specifies a boolean condition, similar to that which you would declare in a

WHERE clause, that must be met for GPSS to delete rows in the target table that meet the

MATCH COLUMNS criteria.
MAPPING:
Optional. Overrides the default source-to-target column mapping. GPSS supports two mapping

syntaxes.

ﬂ When you specify a MAPPING, ensure that you provide a mapping for all Kafka data
elements of interest. GPSS does not automatically match column names when you

provide a MAPPING.

NAME: target_column_name
Specifies the target Tanzu Greenplum table column name.

EXPRESSION: { source_column_name | expression }
Specifies a Kafka cor.umns : NAME (source_column_name) or an expression. When you specify

an expression, you may provide a value expression that you would specify in the seLECT list

260

Tanzu Greenplum Streaming Server

of a query, such as a constant value, a column reference, an operator invocation, a built-in or
user-defined function call, and so on.

target_column_name: { source_column_name | expression }
When you use this MaAPPING syntax, specify the target_column_name and
{source_column_name | expression} as described above.

KAFKA:METADATA: Options

SCHEMA: metadata_schema _name
The name of the Tanzu Greenplum schema in which GPSS creates external and history tables. The
default metadata_schema_name is KAFKA: OUTPUT : SCHEMA.

Tanzu Greenplum COMMIT: Options

COMMIT:

Controls how gpkafka load commits data to Tanzu Greenplum. You must specify one of Max RrRow or
MINIMAL INTERVAL. You may specify both configuration parameters as long as both values are not
zero (0). Try setting and tuning MINTIMAL INTERVAL to your environment; introduce a Max RrRow setting
only if you encounter high memory usage associated with message buffering.

MAX_ROW: number_of rows
The number of rows to batch before triggering an INSERT operation on the Tanzu Greenplum
table. The default value of Max_row is 0, which instructs GPSS to ignore this commit trigger
condition.

MINIMAL_INTERVAL: wait_time
The minimum amount of time to wait (milliseconds) between each TNSERT operation on the
table. The default value is 0, wait forever.

Kafka POLL: Options

ﬂ The poLL properties are deprecated and ignored by GPSS.

POLL:

Controls the polling time period and batch size when reading Kafka data.

BATCHSIZE: num_records
The number of Kafka records in a batch. Barcas1ze must be smaller than comMIT: MAX ROW.
The default batch size is 200.

TIMEOUT: poll_time
The maximum time, in milliseconds, to wait in a polling cycle if Kafka data is not available.
You must specify a TTMEOUT greater than 100 milliseconds and less than
COMMIT:MINIMAL INTERVAL. The default poll timeout is 1000 milliseconds.

Tanzu Greenplum TASK: Options

TASK:

Controls the execution and scheduling of a periodic (maintenance) task.

261

Tanzu Greenplum Streaming Server

POST_BATCH_SQL: udf or_sql_to run
The user-defined function or SQL command(s) that you want to run after the specified number
of batches are read from Kafka. The default is null.

BATCH_INTERVAL: num_batches
The number of batches to read before running udf_or_sql_to_run. The default batch interval is
0.

Kafka PROPERTIES: Options

PROPERTIES:

Kafka consumer configuration property names and values.
kafka_property _name
The name of a Kafka property.

kafka_property value
The Kafka property value.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the gpkafka.yaml configuration file. For example, if you
create a table as follows:

CREATE TABLE "MyTable" ("MyColumn" text);
Your gpkafka.yaml YAML configuration file would refer to the above table and column names as:

COLUMNS:
- name: '"MyColumn"'
type: text
OUTPUT:
TABLE: '"MyTable"'

GPSS requires Kafka version 0.11 or newer for exactly-once delivery assurance. You can run with an older
version of Kafka (but lose the exactly-once guarantee) by adding the following PrROPERTIES block to your
gpkafka.yaml load configuration file:

PROPERTIES:
api.version.request: false

broker.version.fallback: 0.8.2.1

Examples

Load data from Kafka as defined in the Version 1 configuration file named kafka2greenplum.yaml:

gpkafka load kafka2greenplum.yaml

Example kafka2greenplum.yaml configuration file:

262

DATABASE: ops
USER: gpadmin
HOST: mdw-1
PORT: 5432
KAFKA:
INPUT:
SOURCE :
BROKERS: kbro
TOPIC: custom
COLUMNS:
- NAME: cust_
TYPE: int
- NAME: month
TYPE: int
- NAME: expen
TYPE: decim
FORMAT: delimite
DELIMITED OPTION
DELIMITER: '|
ERROR_LIMIT: 25
OUTPUT :
SCHEMA: payables
TABLE: expenses
MAPPING:
- NAME: custom
EXPRESSION:
- NAME: newcus
EXPRESSION:
- NAME: expens
EXPRESSION:
- NAME: tax du
EXPRESSION:
METADATA:
SCHEMA: gpkafka
COMMIT:
MINIMAL INTERVAL

See Also

kerhost1:9092

er_expenses

id

ses
al(9,2)
d

er_id

cust id

t

cust_id > 5000000
es

expenses

e

expenses * .0725

internal

: 2000

gpkafka-v2.yaml, gpkafka load, gpss, gpss.json

filesource-v3.yaml

GPSS load configuration file for a File data source (version 3).

Synopsis

version: v3

targets:
- gpdb:
host: <host>
port: <greenplum p

user: <user_name>

ort>

Tanzu Greenplum Streaming Server

263

Tanzu Greenplum Streaming Server

password: <password>
database: <db_name>
work schema: <work schema name>
error limit: <num _errors> | <percentage errors>
filter expression: <filter string>
tables:
- table: <table name>
schema: <schema name>
mode:
specify a single mode property block (described below)
insert: {}
update:

<mode_specific_property>: <value>

merge:

<mode_specific_property>: <value>

mapping:
<target_column_name> : <source_column_name> | <expression>

filter: <output_ filter string>

sources:
- file:
uri:

- <file_path>

exec:
command: <command_to_run>
workdir: <directory>
stderr_as_fail: <boolean>
content:
<data format>:
<column_ spec>
<other props>
encoding: <char set>
task:
prepare statement: <udf or sql to_ run>

teardown_statement: <udf_or_sqgl_to_run>

meta:
json:
column:
name: meta
type: Json
option:
schedule:

max_retries: <num_retries>
retry_interval: <retry_ time>
running duration: <run_time>
auto _stop_ restart interval: <restart time>
max_restart_times: <num_restarts>
quit at eof after: <clock time>
alert:

command: <command_ to_ run>

264

Tanzu Greenplum Streaming Server

workdir: <directory>
timeout: <alert_time>

Where the mode_specific_propertys that you can specify for update and merge mode follow:

update:
match columns: [<match column_ names>]
order columns: [<order column_names>]
update columns: [<update column_ names>]

update condition: <update condition>

merge:
match columns: [<match column names>]
update columns: [<update column names>]
order columns: [<order column_ names>]
update condition: <update condition>
delete_condition: <delete_condition>

Where data_format, column_spec, and other_props are one of the following blocks (data source-specific):
avro:

source_column_name: <column_ name>

schema_url: <http://schemareg host:schemareg port> %,

o

bytes to base64: <boolean>

binary:

source column name: <column name>

csv:
columns:
- name: <column_name>

type: <column_data_type>

delimiter: <delim char>
quote: <quote_ char>

null string: <nullstr_val>
escape: <escape_char>
force_not_null: <columns>

fill missing_fields: <boolean>

custom:
columns:
- name: <column_name>

type: <column_data_type>

name: <formatter name>
options:

- <optname>=<optvalue>

delimited:
columns:
- name: <column_name>

type: <column _data_ type>

265

Tanzu Greenplum Streaming Server

delimiter: <delimiter_string>
eol prefix: <prefix string>
quote: <quote char>

escape: <escape char>

json:
column:
name: <column_name>
type: json | Jjsonb
is jsonl: <boolean>

newline: <newline str>

And where you may specify any property value with a template variable that GPSS substitutes at runtime
using the following syntax:

<property:> {{<template_var>}}
Description

ﬁ Version 3 of the GPSS load configuration file is different in both content and format than
previous versions of the file. Certain symbols used in the GPSS version 1 and 2
configuration file reference page syntax have different meanings in version 3 syntax:

e Brackets [] are literal and are used to specify a list in version 3. They are no
longer used to signify the optionality of a property.

e Curly braces {} are literal and are used to specify YAML mappings in version 3
syntax. They are no longer used with the pipe symbol (|) to identify a list of
choices.

You specify the configuration properties for a VMware Tanzu Greenplum streaming server (GPSS) file load
job in a YAML-formatted configuration file that you provide to the gpsscli submit OF gpsscli load
commands. There are three types of configuration properties in this file - those that identify the VMware
Tanzu Greenplum connection and target table, properties specific to the file data source that you will load
into Greenplum, and job-related properties.

This reference page uses the name filesource-v3.yaml to refer to this file; you may choose your own
name for the file.

The gpsscli utility processes the YAML configuration file keywords in order, using indentation (spaces) to
determine the document hierarchy and the relationships between the sections. The use of white space in
the file is significant. Keywords are not case-sensitive.

Keywords and Values

version Property

version: v3
The version of the configuration file. You must specify version: v3.

266

Tanzu Greenplum Streaming Server

targets:gpdb Properties

host: host
The host name or IP address of the Tanzu Greenplum coordinator host.

port: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.

user: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the Configuring Tanzu Greenplum Role Privileges.

password: password
The password for the Tanzu Greenplum user/role.

database: db_name
The name of the Tanzu Greenplum database.

work_schema: work_schema_name
The name of the Tanzu Greenplum Database schema in which GPSS creates internal tables. The
default work_schema_name is public.

error_limit: num_errors | percentage_errors
The error threshold, specified as either an absolute number or a percentage. GPSS stops running the
job when this limit is reached.

filter_expression: filter_string
The filter to apply to the input data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. filter_string must be a valid SQL conditional expression and may reference one or more
source value, key, or meta column names.

tables:

The Tanzu Greenplum tables, and the data that GPSS will load into each.

table: table_name
The name of the Tanzu Greenplum table into which GPSS loads the data.

schema: schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.

mode:
The table load mode; insert, merge, or update. The default mode is insert.

ﬁ update and merge are not supported if the target table column name is a reserved
keyword, has capital letters, or includes any character that requires quotes (" ") to
identify the column.

insert:

Inserts source data into Greenplum.
update:
Updates the target table columns that are listed in update columns when the input columns
identified in match columns match the named target table columns and the optional
update condition is true.
merge:

267

Tanzu Greenplum Streaming Server

Inserts new rows and updates existing rows when:
e columns are listed in update columns,
e thematch columns target table column values are equal to the input data, and

e anoptional update condition is specified and met.

Deletes rows when:
¢ thematch columns target table column values are equal to the input data, and

e anoptional delete condition is specified and met.

New rows are identified when the match columns value in the source data does not
have a corresponding value in the existing data of the target table. In those cases,
the entire row from the source file is inserted, not only the match columns and
update columns. If there are multiple new match columns values in the input data
that are the same, GPSS inserts or updates the target table using a random matching
input row. When you specify order columns, GPSS sorts the input data on the
specified column(s) and inserts or updates from the input row with the largest value.

mode_property _name: value
The name to value mapping for a mode property. Each mode supports one or more of the
following properties as specified in the Synopsis.

match_columns: [match_column_names]
A comma-separated list that specifies the column(s) to use as the join condition for the
update. The attribute value in the specified target column(s) must be equal to that of the
corresponding source data column(s) in order for the row to be updated in the target table.
Required when mode is merge Or update.

order_columns: [order_column_names]
A comma-separated list that specifies the column(s) by which GPSS sorts the rows. When
multiple matching rows exist in a batch, order columns is used with match columns to
determine the input row with the largest value; GPSS uses that row to write/update the target.
Optional. May be specified in merge mode to sort the input data rows.

update_columns: [update_column_names]
A column-sparated list that specifies the column(s) to update for the rows that meet the
match columns criteria and the optional update condition.
Required when mode is merge Or update.

update_condition: update _condition
Specifies a boolean condition, similar to that which you would declare in a wHERE clause, that
must be met in order for a row in the target table to be updated (or inserted, in the case of a
merge). Optional.

delete_condition: delete_condition
In merge mode, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
match columns criteria. Optional.

mapping:
Optional. Overrides the default source-to-target column mapping.

268

Tanzu Greenplum Streaming Server

K

When you specify a mapping, ensure that you provide a mapping for all source data
elements of interest. GPSS does not automatically match column names when you
provide a mapping block.

target_column_name: source_column_name | expression : target_column_name specifies the target
Tanzu Greenplum table column name. GPSS maps this column name to the source column name
specified in source_column_name, or to an expression. When you specify an expression, you may
provide a value expression that you would specify in the seLECT list of a query, such as a constant
value, a column reference, an operator invocation, a built-in or user-defined function call, and so on.

filter: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the
filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the

message is dropped. output_filter_string must be a valid SQL conditional expression and may
reference one or more META Or VALUE column names.

sources:file: Options

The file input configuration parameters. You must provide exactly one of uri or an exec block.

uri

The path to the file.

file_path
A URL identifying a file or files to be loaded. You can specify wildcards in any element of the
path. To load all files in a directory, specify dirname/*.

exec

The execution options for the command whose stdout GPSS loads into Tanzu Greenplum.

command: command_to_run
The program that the GPSS server runs on the local host, including the arguments. The
command must be executable by GPSS, and can include pipe and quote characters.

workdir: directory
The working directory for the child process. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

stderr_as_fail: boolean
Specifies whether data written to stderr constitutes failure of the command, regardless of the
command return value. The default value is false; GPSS does not consider writing to stderr
a failure, and will write a message to the GPSS log file. When true, GPSS treats any output to
stderr as a failure, and rolls back the operation.

content:
The file type, field names, and type-specific properties of the file data. You must specify all data
elements in the order in which they appear in the file.

column_spec

269

Tanzu Greenplum Streaming Server

The source to Greenplum column mapping. The supported column specification differs for different
data formats as described below.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined

in source column name, column:name, Of columns:name With a column name in the target Tanzu

Greenplum table. You can override the default mapping by specifying a mapping: block.
data_format

The format of the key or value data. You may specify a data_format of avro, binary, csv, custom,
delimited, or json for the key and value, with some restrictions.

avro
When you specify the avro data format for a key or value, GPSS reads the data into a single
json-type column. You may specify a schema registery location and whether or not you want
GPSS to convert bytes fields into base64-encoded strings.

source_column_name: column_name
The name of the single json-type column into which GPSS reads the key or value data.

schema_url: schemareg_host:schemareg_port
When you specify the avro format and the Avro schema of the JSON data that you want to
load is registered in the Confluent Schema Registry, you must identify the host name and port
number of each Confluent Schema Registry server in your Kafka cluster. You may specify
more than one address, and at least one of the addresses must be legal.

bytes to base64: boolean
When true, GPSS converts Avro bytes fields into base64-encoded strings. The default value
is false, GPSS does not perform the conversion.

binary
When you specify the binary data format, GPSS reads the data into a single bytea-type
column.

source_column_name: column_name
The name of the single bytea-type column into which GPSS reads the key or value data.

csv
When you specify the csv data format, GPSS reads the data into the list of columns that you
specify. The file content cannot contain line ending characters (CR and LF).

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target
Tanzu Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element
and the associated Tanzu Greenplum table column.

delimiter: delim_char
Specifies a single ASCII character that separates columns within each message or row of
data. The default delimiter is a comma ().

quote: quote char
Specifies the quotation character. Because GPSS does not provide a default value for this
property, you must specify a value.

null_string: nullstr_val

270

Tanzu Greenplum Streaming Server

Specifies the string that represents the null value. Because GPSS does not provide a default
value for this property, you must specify a value.

force_not_null: columns
Specifies a comma-separated list of column names to process as though each column were
quoted and hence not a NULL value. For the default nu11 string (nothing between two
delimiters), missing values are evaluated as zero-length strings.

fill_missing_fields: boolean
Specifies the action of GPSS when it reads a row of data that has missing trailing field values
(the row has missing data fields at the end of a line or row). The default value is false, GPSS
returns an error when it encounters a row with missing trailing field values.
If set to true, GPSS sets missing trailing field values to nuLL. Blank rows, fields with a noT
NULL constraint, and trailing delimiters on a line will still generate an error.

newline: newline_str
Specifies the string that represents a new line. + GPSS does not specify a default value.

custom
When you specify the custom data format, GPSS uses the custom formatter that you specify
to process the input data before writing it to Tanzu Greenplum.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target
Tanzu Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element
and the associated Tanzu Greenplum table column.

name: formatter_name
When you specify the custom data format, formatter name is required and must identify the
name of the formatter user-defined function that GPSS should use when loading the data.

options:
A set of function argument name=value pairs.

optname=optvalue
The name and value of the set of arguments to pass into the formatter_name UDF.

delimited
When you specify the delimited data format, GPSS reads the data into the list of columns
that you specify. You must specify the data delimiter.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target
Tanzu Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element
and the associated Tanzu Greenplum table column.

delimiter: delimiter_string
When you specify the delimited data format, delimiter_string is required and must identify
the data element delimiter. delimiter_string may be a multi-byte value, and up to 32 bytes in
length. It may not contain quote and escape characters.

271

Tanzu Greenplum Streaming Server

eol_prefix: prefix_string
Specifies the prefix before the end of line character (\n) that indicates the end of a row. The
default prefix is empty.

quote: quote_char
Specifies the single ASCII quotation character. The default quote character is empty.
If you do not specify a quotation character, GPSS assumes that all columns are unquoted. If
you do not specify a quotation character and do specify an escape character, GPSS assumes
that all columns are unquoted and escapes the delimiter, end-of-line prefix, and escape itself.
When you specify a quotation character, you must specify an escape character. GPSS reads
any content between quote characters as-is, except for escaped characters.

escape: escape_char
Specifies the single ASCII character used to escape special characters (for example, the
delimiter, end-of-line prefix, quote, or escape itself). Therdefault escape character is empty.
When you specify an escape character and do not specify a quotation character, GPSS
escapes only the delimiter, end-of-line prefix, and escape itself.
When you specify both an escape character and a quotation character, GPSS escapes only
these characters.

json
When you specify the json data format, GPSS can read the data as a single JSON object or
as a single JSON record per line.

column:
A single column name/type mapping.

name: column_name
The name of the key or value column. column_name must match the column name of the
target Tanzu Greenplum table.

type: json | jsonb | gp_jsonb | gp_json
The data type of the column.

is_jsonl: boolean
Identifies whether or not GPSS reads the JSON data as a single object or single-record-per-
line. The default is false, GPSS reads the JSON data as a single object.

newline: newline_str
A string that specifies the new line character(s) that end each JSON record. The default
newline is "\n".

encoding: char_set

task:

The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, Or json format. GPSS supports the character sets identified in Character
Set Support in the Tanzu Greenplum documentation.

File data source task properties.

prepare_statement: udf or_sql_to run
A user-defined function or SQL command(s) that you want GPSS to run before it executes the
job. The default is null, no command to run.

teardown_statement: udf _or_sql_to run
A user-defined function or SQL command(s) that you want GPSS to run after the job stops.
GPSS runs the function or command(s) on job success and job failure. The default is null, no
command to run.

272

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

meta:

Tanzu Greenplum Streaming Server

The data type and field name of the file meta data. meta: must specify the json or jsonb
(Greenplum 6 only) data format, and a single json-type column.

You can load this property into the target table with a mapping, or use the property in the update or
merge criteria for a load operation

option: Properties

schedule:

alert:

Controls the frequency and interval of restarting jobs.

retry_interval: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (n), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

max_retries: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

running_duration: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

auto_stop_restart_interval: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
running duration.

max_restart_times: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
running duration. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

quit_at_eof after: clock_time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

command: command_to_run
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB STATUS, and $GPSSJOB DETAIL.

workdir: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

273

Tanzu Greenplum Streaming Server

timeout: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (h), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<property>: {{<template var>}}
For example:

max_retries: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, Of gpsscli load command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the load configuration file. For example, if you create a
table as follows:

CREATE TABLE "MyTable" (cl text);
Your YAML configuration file would refer to the table name as:

targets:
- gpdb:
tables:
- table: '"MyTable"'

You can specify backslash escape sequences in the CSV delimiter, quote, and escape options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

274

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Tanzu Greenplum Streaming Server

Submit a job to load data from an Avro file as defined in the version 3 load configuration file named

loadfromfile v3.yaml:

$ gpsscli submit loadfromfile v3.yaml
Example loadfromfile v3.yaml configuration file:

version: v3

targets:

- gpdb:
host: mdw-1
port: 15432
user: gpadmin
password: changeme
database: testdb
work_schema: public
error_limit: "25"
tables:

- table: orders

schema: public

mode:
merge:
match columns: [pk]
order columns: [seq]

delete condition: flag = 0

mapping:
data: data
pk: pk
seq: seq
sources:
- file:
uri:

- file:///tmp/data.csv
content:
csv:
columns:
- name: pk
type: int
- name: seq
type: int
- name: data
type: text
- name: flag
type: int
option:
schedule: {}

See Also
gpsscli load, gpsscli submit

filesource-v2.yaml

Load configuration file for a GPSS file data source.

275

Tanzu Greenplum Streaming Server

Synopsis

DATABASE: <db_ name>
USER: <user_name>
PASSWORD: <password>
HOST: <coordinator_ host>
PORT: <greenplum_ port>
VERSION: 2
FILE:
INPUT:
SOURCE:
{ URL: <file path> |
EXEC:
COMMAND: <command_to_run>
WORKDIR: <directory>
STDERR AS FAIL: <boolean> }
VALUE:
[COLUMNS :
- NAME: <column name>
TYPE: <column data type>
[000 1]
FORMAT: <value data format>
[AVRO OPTION:
BYTES_TO_BASE64: <boolean>]
[CSV_OPTION:
[DELIMITER: <delim char>]
[QUOTE: <quote_ char>]
[NULL STRING: <nullstr val>]
[ESCAPE: <escape_char>]
[FORCE_NOT NULL: <columns>]
[FILL MISSING FIELDS: <boolean>]]
[NEWLINE: <newline str>]]
[DELIMITED OPTION:
[DELIMITER: <delimiter string>]
[EOL_PREFIX: <prefix string>]
[QUOTE: <quote_char>]
[ESCAPE: <escape_char>]]
[JSONL_OPTION:
[NEWLINE: <newline str>]]
[META:
COLUMNS :
- NAME: <meta_column_name>
TYPE: { json | jsonb }
FORMAT: json
[FILTER: <filter string>]
[ENCODING: <char set>]
[ERROR _LIMIT: { <num errors> | <percentage errors> }]
OUTPUT:
[SCHEMA: <output schema name>]
TABLE: <table name>
[FILTER: <output filter string>]
[MODE: <mode>]
[MATCH_ COLUMNS:
- <match_ column_name>
... 1]
[ORDER_COLUMNS:
- <order_column_name>

L. 11

276

Tanzu Greenplum Streaming Server

[UPDATE COLUMNS:
- <update_column_name>
[coo 11
[UPDATE CONDITION: <update condition>]
[DELETE CONDITION: <delete condition>]
TASK:
PREPARE_SQL: <udf_or_ sql command_ to_ run>
TEARDOWN_SQL: <udf or sql command_ to_ run>
[SCHEDULE:
RETRY_INTERVAL: <retry_ time>
MAX RETRIES: <num_retries>
RUNNING_DURATION: <run_time>
AUTO_STOP_RESTART_INTERVAL: <restart_time>
MAX RESTART TIMES: <num_restarts>
QUIT_AT_EOF_AFTER: <clock_time>]
[ALERT:
COMMAND: <command_to_run>
WORKDIR: <directory>
TIMEOUT: <alert time>]

Where you may specify any property value with a template variable that GPSS substitutes at runtime using
the following syntax:

<PROPERTY:> {{<template_ var>}}

Description

You specify the configuration parameters for a VMware Tanzu Greenplum streaming server (GPSS) file load
job in a YAML-formatted configuration file that you provide to the gpsscli submit Or gpsscli load
commands. There are two types of configuration parameters in this file - those that identify the VMware
Tanzu Greenplum connection and target table, and parameters specific to the file data source that you will
load into Greenplum.

This reference page uses the name filesource.yaml to refer to this file; you may choose your own name
for the file.

The gpsscli utility processes the YAML configuration file keywords in order, using indentation (spaces) to
determine the document hierarchy and the relationships between the sections. The use of white space in
the file is significant, and keywords are case-sensitive.

Keywords and Values

Tanzu Greenplum Options

DATABASE: db_name
The name of the Tanzu Greenplum database.
USER: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in Configuring Tanzu Greenplum Role Privileges.
PASSWORD: password
The password for the Tanzu Greenplum user/role.
HOST: coordinator_host

277

Tanzu Greenplum Streaming Server

The host name or IP address of the Tanzu Greenplum coordinator host.
PORT: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.
VERSION: 2
The version of the GPSS load configuration file. GPSS supports version 2 of this format for a file
data source.

FILE:INPUT: Options

SOURCE:

The file input configuration parameters. You must provide exactly one of UrL or an exec block.

URL: file_path
The URL identifying the file or files to be loaded. You can specify wildcards in any element of
the path. To load all files in a directory, specify dirname/*.

EXEC:
The execution options for the command whose stdout GPSS loads into Tanzu Greenplum.

COMMAND: command_to_run

The program that the GPSS server runs on the local host, including the argume
nts. The command must be executable by GPSS, and can include pipe and quote chara
cters.

WORKDIR: directory

The working directory for the child process. The default working directory is
the directory from which you started the GPSS server process. If you specify a re
lative path, it is relative to the directory from which you started the GPSS serv

er process.

STDERR_AS_FAIL: boolean

Specifies whether data written to “stderr’ constitutes failure of the comman
d, regardless of the command return value. The default value is “false'; GPSS doe
s not consider writing to “stderr’ a failure, and will write a message to the GPS
S log file. When true, GPSS treats any output to “stderr’ as a failure, and rolls

back the operation.

VALUE:

The field names, types, and format of the file data. You must specify all data elements in the order in
which they appear in the file.

COLUMNS:NAME: column_name
The name of a data value column. column_name must match the column name of the target
Tanzu Greenplum table.

: The default source-to-target data mapping behaviour of GPSS is to match a column name as
defined in corumMns : NaME with a column name in the target Tanzu Greenplum TABLE. You can
override the default mapping by specifying a Mapp1ING block.

COLUMNS:TYPE: data_type

278

Tanzu Greenplum Streaming Server

The data type of the column. You must specify a compatible data type for each data element
and the associated Tanzu Greenplum table column.

FORMAT: data_format
The format of the value data. You may specify a FORMAT of avro, binary, csv, json, OF
jsonl for the value data, with some restrictions.

avro
When you specify the avro data format, you must define only a single 5son type column in
corumMns. If the schema is registered in a Confluent Schema Registry, you must also provide

the AVRO OPTION.

binary
When you specify the binary data format, you must define only a single bytea type column
in COLUMNS.

csv
When you specify the csv data format, the message content cannot contain line ending
characters (CR and LF). You may also choose to provide csv_OPTIONS.
When you specify FORMAT: csv, you must not provide a META block.

delimited
When you specify the delimited data format, the delimited message content may contain a
multi-byte delimiter. You must provide DELIMITED OPTIONS.

json
When you specify the json data format, you must define only a single 4 son type column in
COLUMNS.

jsonl

When you specify the yson1 data format, you may provide a JsonL_opTION to define a
newline character.

AVRO_OPTION:BYTES_TO_BASE64: boolean
When true, GPSS converts Avro bytes fields into base64-encoded strings. The default value
is false, GPSS does not perfrom the conversion.

CSV_OPTION
When you specify FORMAT: csv, you may also provide the following options:

DELIMITER: delim_char
Specifies a single ASCII character that separates columns within each message or row of
data. The default delimiter is a comma ().

QUOTE: quote_char
Specifies the quotation character. Because GPSS does not provide a default value for this
property, you must specify a value.

NULL_STRING: nullstr_val
Specifies the string that represents the null value. Because GPSS does not provide a default
value for this property, you must specify a value.

ESCAPE: escape_char
Specifies the single character that is used for escaping data characters in the content that
might otherwise be interpreted as row or column delimiters. Make sure to choose an escape
character that is not used anywhere in your actual column data. Because GPSS does not
provide a default value for this property, you must specify a value.

FORCE_NOT_NULL: columns

279

Tanzu Greenplum Streaming Server

Specifies a comma-separated list of column names to process as though each column were
quoted and hence not a NULL value. For the default nul1l string (nothing between two
delimiters), missing values are evaluated as zero-length strings.

FILL MISSING_FIELDS: boolean
Specifies the action of GPSS when it reads a row of data that has missing trailing field values
(the row has missing data fields at the end of a line or row). The default value is false, GPSS
returns an error when it encounters a row with missing trailing field values.
If set to true, GPSS sets missing trailing field values to nuLL. Blank rows, fields with a noT
NULL constraint, and trailing delimiters on a line will still generate an error.

NEWLINE: newline_str
Specifies the string that represents a new line. GPSS does not specify a default value.

DELIMITED_OPTION
When you specify FORMAT: delimited, you may also provide the following options:

DELIMITER: delimiter_string
When you specify the de1limited data format, delimiter_string is required and must identify
the data element delimiter. delimiter_string may be a multi-byte value, and up to 32 bytes in
length. It may not contain quote and escape characters.

EOL_PREFIX: prefix_string
Specifies the prefix before the end of line character (\n) that indicates the end of a row. The
default prefix is empty.

QUOTE: quote_char
Specifies the single ASCII quotation character. The default quote character is empty.
If you do not specify a quotation character, GPSS assumes that all columns are unquoted. If
you do not specify a quotation character and do specify an escape character, GPSS assumes
that all columns are unquoted and escapes the delimiter, end-of-line prefix, and escape itself.
When you specify a quotation character, you must specify an escape character. GPSS reads
any content between quote characters as-is, except for escaped characters.

ESCAPE: escape_char
Specifies the single ASCII character used to escape special characters (for example, the
delimiter, end-of-line prefix, quote, or escape itself). Therdefault escape character is empty.
When you specify an escape character and do not specify a quotation character, GPSS
escapes only the delimiter, end-of-line prefix, and escape itself.
When you specify both an escape character and a quotation character, GPSS escapes only
these characters.

JSONL_OPTION
Optional. When you specify FORMAT: jsonl, you may choose to provide the JsonNL opTION
properties.

NEWLINE: newline_str
A string that specifies the new line character(s) that end each JSON record. The default
newline is "\n".

META:

The field name, type, and format of the file meta data. mETA must specify a single json or jsonb

(Greenplum 6 only) type column and FORMAT: json. The available meta data for a file is a single

text-type property named filename. You can load this property into the target table with a MapPING,

or use the property in the update or merge criteria for a load operation.

FILTER: filter_string

280

Tanzu Greenplum Streaming Server

The filter to apply to the input data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. filter_string must be a valid SQL conditional expression and may reference one or more
META Or VALUE column names.

ENCODING: char_set
The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, Or §son format. GPSS supports the character sets identified in Character
Set Support in the Tanzu Greenplum documentation.

ERROR_LIMIT: { num_errors | percentage_errors }
The error threshold, specified as either an absolute number or a percentage. GPSS stops the load
operation when this limit is reached. The default ErrOR L1MIT is zero; GPSS deactivates error
logging and stops the load operation when it encounters the first error. Due to a limitation of the
Tanzu Greenplum external table framework, GPSS does not accept ERROR LIMIT: 1.

FILE:OUTPUT: Options

SCHEMA: output_schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.

TABLE: table_name
The name of the Tanzu Greenplum table into which GPSS loads the file data.

FILTER: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. output_filter_string must be a valid SQL conditional expression and may reference one or
more META Or VALUE column names.

MODE: mode

The table load mode. Valid mode values are INSERT, MERGE, or UPDATE. The default value is INSERT.

UPDATE - Updates the target table columns that are listed in upDATE corLuMns when the input
columns identified in MaTcH corumMns match the named target table columns and the optional
UPDATE CONDITION is true.

UPDATE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MERGE - Inserts new rows and updates existing rows when:
e columns are listed in UPDATE COLUMNS,
e themaTcH coLumns target table column values are equal to the input data, and
e an optional UPDATE CONDITION is specified and met.

Deletes rows when:
e themaTcH coLumns target table column values are equal to the input data, and
e anoptional DELETE CONDITION is specified and met.

New rows are identified when the MaTcr corumns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the

281

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

Tanzu Greenplum Streaming Server

source file is inserted, not only the MaTcu corumns and UpDATE coruMns. If there are multiple new
MATCH COLUMNS values in the input data that are the same, GPSS inserts or updates the target table
using a random matching input row. When you specify orDER corumns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.
MERGE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MATCH_COLUMNS:

Required if MODE is MERGE OF UPDATE.

match_column_name
Specifies the column(s) to use as the join condition for the update. The attribute value in the
specified target column(s) must be equal to that of the corresponding source data column(s)
in order for the row to be updated in the target table.

ORDER_COLUMNS:

Optional. May be specified in MERGE MODE to sort the input data rows.

order_column_name
Specify the column(s) by which GPSS sorts the rows. When multiple matching rows exist in a
batch, orDER corumns is used with MaTcH corumMns to determine the input row with the largest
value; GPSS uses that row to write/update the target.

UPDATE_COLUMNS:

Required if MODE is MERGE OF UPDATE.

update_column_name
Specifies the column(s) to update for the rows that meet the MaTcu corumns criteria and the

optional UPDATE CONDITION.

UPDATE_CONDITION: update_condition
Optional. Specifies a boolean condition, similar to that which you would declare in a wHERE clause,
that must be met in order for a row in the target table to be updated (or inserted, in the case of a
MERGE).

DELETE_CONDITION: delete_condition
Optional. In MERGE MODE, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
MATCH COLUMNS criteria.

MAPPING:
Optional. Overrides the default source-to-target column mapping. GPSS supports two mapping
syntaxes.
ﬁ When you specify a MaPPING, ensure that you provide a mapping for all data value

elements of interest. GPSS does not automatically match column names when you
provide a MAPPING.

NAME: target_column_name

282

Tanzu Greenplum Streaming Server

Specifies the target Tanzu Greenplum table column name.

EXPRESSION: { source_column_name | expression }
Specifies a value or meta corLumns : NAME (source_column_name) or an expression. When you
specify an expression, you may provide a value expression that you would specify in the
seLECT list of a query, such as a constant value, a column reference, an operator invocation,
a built-in or user-defined function call, and so on.

target_column_name: { source_column_name | expression }
When you use this MaPPING syntax, specify the target_column_name and
{source_column_name | expression} as described above.

FILE:TASK: Options

PREPARE_SQL: udf_or_sql_to_run
The user-defined function or SQL command(s) that you want GPSS to run before it executes the job.
The default is null, no command to run.

TEARDOWN_SQL: udf_or_sql_to_run
The user-defined function or SQL command(s) that you want GPSS to run after the job stops. GPSS
runs the function or command(s) on job success and job failure. The default is null, no command to
run.

Job SCHEDULE: Options

SCHEDULE:

Controls the frequency and interval of restarting jobs.

RETRY_INTERVAL: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

MAX_RETRIES: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

RUNNING_DURATION: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

AUTO_STOP_RESTART_INTERVAL: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
RUNNING DURATION.

MAX_RESTART_TIMES: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
RUNNING DURATION. The default is O, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

QUIT_AT_EOF_AFTER: clock_time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

283

Tanzu Greenplum Streaming Server

Job ALERT: Options

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

COMMAND: command_to_run
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB NAME, $GPSSJOB STATUS, and $GPSSJOB DETAIL.

WORKDIR: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

TIMEOUT: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (h), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<PROPERTY>: {{<template_var>}}
For example:
MAX RETRIES: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, Of gpsscli load command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the filesource.yaml configuration file. For example, if
you create a table as follows:

CREATE TABLE "MyTable" ("MyColumn" text);

Your filesource.yaml YAML configuration file would refer to the above table and column names as:

284

COLUMNS :
- name: '"MyColumn"'

type: text

OUTPUT:
TABLE: '"MyTable"'

Tanzu Greenplum Streaming Server

You can specify backslash escape sequences in the CSV DELIMITER, QUOTE, and ESCAPE options. GPSS

supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

Submit a job to load data from an Avro file as defined in the version 2 load configuration file named

loadfromfile.yaml:

$ gpsscli submit loadfromfile.yaml
Example 1oadfromfile.yaml configuration file:

DATABASE: ops
USER: gpadmin
PASSWORD: changeme
HOST: mdw-1
PORT: 15432
VERSION: 2
FILE:
INPUT:
SOURCE:
URL: file:///tmp/file.avro
VALUE:
COLUMNS:
- NAME: value
TYPE: json
FORMAT: avro
META:
COLUMNS :
- NAME: meta
TYPE: json
FORMAT: json
FILTER: (value->>'x'"')::int < 10
ERROR_LIMIT: 25
OUTPUT:
SCHEMA: gpschema
TABLE: gptable
MODE: INSERT
MAPPING:
- NAME: a
EXPRESSION: (value->>'x"')::int
- NAME: b
EXPRESSION: (value->>'y')::text
- NAME: c
EXPRESSION: (meta->>'filename')
SCHEDULE:

rtext

285

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Tanzu Greenplum Streaming Server

RETRY INTERVAL: 500ms
MAX RETRIES: 2

See Also

gpsscli load, gpsscli submit

rabbitmqg-v3.yaml

GPSS load configuration file for a RabbitMQ data source (version 3).
Synopsis
version: v3

targets:
- gpdb:
host: <host>
port: <greenplum_port>
user: <user_ name>
password: <password>
database: <db name>
work schema: <work_schema name>
error limit: <num errors> | <percentage errors>
filter expression: <filter string>
tables:
- table: <table name>
schema: <schema name>
mode :
specify a single mode property block (described below)
insert: {}
update:

<mode_specific property>: <value>

merge:

<mode_specific property>: <value>

transformer:
transform: <udf transform_ udf name>
properties:

<udf transform property name>: <property value>

columns:

- <udf_transform_column_name>

mapping:
<target column name> : <source column name> | <expression>

filter: <output_ filter string>

sources:
- rabbitmg:
server: <rmg_user>:<rmg_password>@<rmg_host>:<rmg_port>

vhost: <gpss_vhost>

286

Tanzu Greenplum Streaming Server

stream: <name> | queue: <name>
consistency: strong | at-least | at-most | none
fallback_offset: earliest | latest
save_ failing batch: <boolean>
recover failing batch: <boolean> (Beta)
data_content:
<data_ format>:
<column_spec>
<other props>
meta:
json:
column:
name: meta
type: json
encoding: <char_ set>
transformer:
path: <path_to plugin_ transform library>
on_init: <plugin_transform_init name>
transform: <plugin_transform_ name>
properties:
<plugin transform property name>: <property value>
properties:
<rmg property name>: <rmg property value>

task:
batch_size:
max_ count: <number of rows>
interval ms: <wait time>
idle duration ms: <idle time>
window size: <num_ batches>
window_statement: <udf or sgl to run>
prepare statement: <udf_or sql to_run>

teardown_statement: <udf or_sqgl to_ run>

option:

schedule:
max_retries: <num_ retries>
retry interval: <retry time>
running_duration: <run_time>
auto_stop_ restart_interval: <restart_ time>
max_restart _times: <num_restarts>
quit at eof after: <clock time>

alert:
command: <command_to_run>
workdir: <directory>

timeout: <alert_time>

Where the mode_specific_propertys that you can specify for update and merge mode follow:

update:
match columns: [<match column names>]
order columns: [<order column_ names>]
update columns: [<update column_ names>]

update condition: <update condition>

merge:

match_columns: [<match_ column_names>]

287

update_columns: [<update_column_names>]
order_columns: [<order_column_names>]
update condition: <update condition>
delete_condition: <delete_condition>

Where data_format, column_spec, and other_props are one of the following blocks

binary:

source_column_name: <column_name>

csv:
columns:
- name: <column_ name>

type: <column data type>

delimiter: <delim_ char>
quote: <quote char>

null string: <nullstr val>
escape: <escape_ char>
force not null: <columns>

fill missing fields: <boolean>

custom:
columns:
- name: <column name>

type: <column_data_type>

name: <formatter name>
options:

- <optname>=<optvalue>

delimited:
columns:
- name: <column_name>

type: <column_data_type>

delimiter: <delimiter string>
eol prefix: <prefix string>
quote: <quote char>

escape: <escape char>

json:
column:
name: <column_name>
type: json | Jsonb
is_jsonl: <boolean>

newline: <newline str>

Tanzu Greenplum Streaming Server

And where you may specify any property value with a template variable that GPSS substitutes at runtime

using the following syntax:

<property:> {{<template var>}}

288

Tanzu Greenplum Streaming Server
Description

ﬁ Version 3 of the GPSS load configuration file is different in both content and format than
previous versions of the file. Certain symbols used in the GPSS version 1 and 2
configuration file reference page syntax have different meanings in version 3 syntax:

e Brackets [] are literal and are used to specify a list in version 3. They are no
longer used to signify the optionality of a property.

e Curly braces {} are literal and are used to specify YAML mappings in version 3
syntax. They are no longer used with the pipe symbol (|) to identify a list of
choices.

You specify load configuration properties for a VMware Tanzu Greenplum streaming server (GPSS)
RabbitMQ load job in a YAML-formatted configuration file. (This reference page uses the name rabbitmg-
v3.yaml when referring to this file; you may choose your own name for the file.) Load properties include
VMware Tanzu Greenplum connection and data import properties, RabbitMQ data source information, and
properies specific to the GPSS job.

The gpsscli utilities process the YAML configuration file in order, using indentation (spaces) to determine
the document hierarchy and the relationships between the sections. The use of white space in the file is
significant. Keywords are not case-sensitive.

Keywords and Values

version Property

version: v3
The version of the configuration file. You must specify version: v3.

targets:gpdb Properties

host: host
The host name or IP address of the Tanzu Greenplum coordinator host.
port: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.
user: user_name
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the Configuring Tanzu Greenplum Role Privileges.
password: password
The password for the Tanzu Greenplum user/role.
database: db_name
The name of the Tanzu Greenplum.
work_schema: work_schema_name
The name of the Tanzu Greenplum schema in which GPSS creates internal tables. The default
work_schema_name is public.
error_limit: num_errors | percentage_errors

289

Tanzu Greenplum Streaming Server

The error threshold, specified as either an absolute number or a percentage. GPSS stops running the

job when this limit is reached.

filter_expression: filter_string

tables:

The filter to apply to the input data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. filter_string must be a valid SQL conditional expression and may reference one or more
source value or meta column names.

The Tanzu Greenplum tables, and the data that GPSS will load into each.

table: table_name
The name of the Tanzu Greenplum table into which GPSS loads the data.

schema: schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.

mode:
The table load mode; insert, merge, or update. The default mode is insert.

ﬁ update and merge are not supported if the target table column name is a reserved
keyword, has capital letters, or includes any character that requires quotes (" ") to
identify the column.

insert:

Inserts source data into Greenplum.
update:
Updates the target table columns that are listed in update columns when the input columns
identified in match columns match the named target table columns and the optional
update condition is true.
merge:
Inserts new rows and updates existing rows when:

e columns are listed in update columns,
e thematch columns target table column values are equal to the input data, and
e anoptional update condition is specified and met.

Deletes rows when:
e thematch columns target table column values are equal to the input data, and
e anoptional delete condition is specified and met.

New rows are identified when the match columns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the
source file is inserted, not only the match columns and update columns. If there are multiple new
match columns values in the input data that are the same, GPSS inserts or updates the target table
using a random matching input row. When you specify order columns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.

290

Tanzu Greenplum Streaming Server

mode_property_name: value
The name to value mapping for a mode property. Each mode supports one or more of the
following properties as specified in the Synopsis.

match_columns: [match_column_names]
A comma-separated list that specifies the column(s) to use as the join condition for the
update. The attribute value in the specified target column(s) must be equal to that of the
corresponding source data column(s) in order for the row to be updated in the target table.
Required when mode is merge Or update.

order_columns: [order_column_names]
A comma-separated list that specifies the column(s) by which GPSS sorts the rows. When
multiple matching rows exist in a batch, order columns is used with match columns to
determine the input row with the largest value; GPSS uses that row to write/update the target.
Optional. May be specified in merge mode to sort the input data rows.

update_columns: [update_column_names]
A column-sparated list that specifies the column(s) to update for the rows that meet the
match columns criteria and the optional update condition.
Required when mode is merge Or update.

update_condition: update_condition
Specifies a boolean condition, similar to that which you would declare in a wHERE clause, that
must be met in order for a row in the target table to be updated (or inserted, in the case of a
merge). Optional.

delete_condition: delete_condition
In merge mode, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
match columns criteria. Optional.

transformer:

Optional. Output data transform block. An output data transformer is a user-defined function
(UDF) that transforms the data before it is loaded into Tanzu Greenplum. The semantics of
the UDF are transform-specific.

ﬂ GPSS currently supports specifying only one of the mapping or (UDF)
transformer blocks in the load configuration file, not both.

transform: udf_transform_udf name
The name of the output transform UDF. GPSS invokes this function for every batch of data it
writes to Tanzu Greenplum.
properties: udf_transform_property _name: property_value
One or more property name and value pairs that GPSS passes to udf _transform_udf name.
columns: output_transform_column_name
The name of one or more columns involved in the transform.
mapping:

Optional. Overrides the default source-to-target column mapping.

291

Tanzu Greenplum Streaming Server

ﬁ GPSS currently supports specifying only one of the mapping or (UDF)
transformer blocks in the load configuration file, not both.

ﬁ When you specify a mapping, ensure that you provide a mapping for all source data
elements of interest. GPSS does not automatically match column names when you
provide a mapping block.

target_column_name: source_column_name | expression
target_column_name specifies the target Tanzu Greenplum table column name. GPSS maps
this column name to the source column name specified in source_column_name, or to an
expression. When you specify an expression, you may provide a value expression that you
would specify in the seLECT list of a query, such as a constant value, a column reference, an
operator invocation, a built-in or user-defined function call, and so on.

filter: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the
filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the
message is dropped. output_filter_string must be a valid SQL conditional expression and may
reference one or more META Or VALUE column names.

sources:rabbitmq: Options

server: rmq_user:rmq_password@rmgq_host:rmq_port
The RabbitMQ server connection string; includes the user name with which RabbitMQ logs in to the
broker, the password for rmqg_user, the hostname or IP address of the RabbitMQ server, and the port
number on which the RabbitMQ server is listening. rmq_user and rmq_password are optional, and
must be omitted when loading from a RabbitMQ queue over a TLS-encrypted connection.

vhost: gpss_vhost
The RabbitMQ virtual host that represents the GPSS server.

stream: name
The name of the RabbitMQ stream from which to read the data. You may specify only one of stream
Or queue.

queue: name
The name of the RabbitMQ queue from which to read the data. You may specify only one of stream
Or queue.

consistency: strong | at-least | at-most | none
Specify how GPSS should manage message offsets when it acts as a consumer of a RabbitMQ
queue or stream. Valid values are at-least (GPSS stores the offsets before commit), at-most
(GPSS stores the offsets after commit), and none. For streams, GPSS also supports strong
consistency. The default value is at-1east. Refer to Understanding RabbitMQ Message Offset
Management for more detailed information.

fallback_offset: earliest | latest
When reading from a RabbitMQ stream, specifies the behaviour of GPSS when it detects a message
offset gap. When set to earliest, GPSS automatically resumes a load operation from the earliest

292

Tanzu Greenplum Streaming Server

available published message. When set to 1atest, GPSS loads only new messages to the
RabbitMQ stream.

save_failing_batch: boolean
Determines whether or not GPSS saves data into a backup table before it writes the data to Tanzu
Greenplum. Saving the data in this manner aids recovery when GPSS encounters errors during the
evaluation of expressions. The default is false; GPSS does not use a backup table, and returns
immediately when it encounters an expression error. When you set this property to true, GPSS
writes both the good and the bad data in the batch to a backup table named gpssbackup <jobhash>,
and continues to process incoming data. You must then manually load the good data from the
backup table into Greenplum or set recover failing batch (Beta) to true to have GPSS
automatically reload the good data.

ﬁ Using a backup table to hedge against mapping errors may impact performance, especially
when the data that you are loading has not been cleaned.

recover_failing_batch: boolean (Beta)
When set to true and save failing batch is also true, GPSS automatically reloads the good
data in the batch and retains only the error data in the backup table. The default value is false;
GPSS does not process the backup table.

ﬁ Enabling this property requires that GPSS has the Tanzu Greenplum privileges to create a
function.

data_content:
The RabbitMQ message value data type, field names, and type-specific properties. You must
specify all RabbitMQ data elements in the order in which they appear in the RabbitMQ message.
column_spec

The source to Greenplum column mapping. The supported column specification differs for different
data formats as described below.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined
in source column name, column:name, Of columns:name With a column name in the target Tanzu
Greenplum table. You can override the default mapping by specifying a mapping: block.
data_format
The format of the value data. You may specify a data_format of binary, csv, custom, delimited, OF
json for the value, with some restrictions.
binary
When you specify the binary data format, GPSS reads the data into a single bytea-type column.
source_column_name: column_name
The name of the single bytea-type column into which GPSS reads the value data.
csv
When you specify the csv data format, GPSS reads the data into the list of columns that you
specify. The message content cannot contain line ending characters (CR and LF).
columns:

293

Tanzu Greenplum Streaming Server

A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a value column. column_name must match the column name of the target Tanzu
Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element and
the associated Tanzu Greenplum table column.

delimiter: delim_char
Specifies a single ASCII character that separates columns within each message or row of data. The
default delimiter is a comma (,).

quote: quote char
Specifies the quotation character. Because GPSS does not provide a default value for this property,
you must specify a value.

null_string: nullstr_val
Specifies the string that represents the null value. Because GPSS does not provide a default value
for this property, you must specify a value.

escape: escape_char
Specifies the single character that is used for escaping data characters in the content that might
otherwise be interpreted as row or column delimiters. Make sure to choose an escape character that
is not used anywhere in your actual column data. Because GPSS does not provide a default value
for this property, you must specify a value.

force_not_null: columns
Specifies a comma-separated list of column names to process as though each column were quoted
and hence not a NULL value. For the default null string (nothing between two delimiters), missing
values are evaluated as zero-length strings.

fill_missing_fields: boolean
Specifies the action of GPSS when it reads a row of data that has missing trailing field values (the
row has missing data fields at the end of a line or row). The default value is false, GPSS returns an
error when it encounters a row with missing trailing field values.

If set to true, GPSS sets missing trailing field values to nurL. Blank rows, fields with a NoT NULL
constraint, and trailing delimiters on a line will still generate an error.

custom
When you specify the custom data format, GPSS uses the custom formatter that you specify to
process the input data before writing it to Tanzu Greenplum.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target Tanzu
Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element and
the associated Tanzu Greenplum table column.

name: formatter_name
When you specify the custom data format, formatter_name is required and must identify the name of
the formatter user-defined function that GPSS should use when loading the data.

options:

294

Tanzu Greenplum Streaming Server

A set of function argument name=value pairs.

optname=optvalue
The name and value of the set of arguments to pass into the formatter_name UDF.

delimited
When you specify the delimited data format, GPSS reads the data into the list of columns that you
specify. You must specify the data delimiter.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a value column. column_name must match the column name of the target Tanzu
Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element and
the associated Tanzu Greenplum table column.

delimiter: delimiter_string
When you specify the delimited data format, delimiter_string is required and must identify the data
element delimiter. delimiter_string may be a multi-byte value, and up to 32 bytes in length. It may not
contain quote and escape characters.

eol_prefix: prefix_string
Specifies the prefix before the end of line character (\n) that indicates the end of a row. The default
prefix is empty.

quote: quote_char
Specifies the single ASCII quotation character. The default quote character is empty.
If you do not specify a quotation character, GPSS assumes that all columns are unquoted. If you do
not specify a quotation character and do specify an escape character, GPSS assumes that all
columns are unquoted and escapes the delimiter, end-of-line prefix, and escape itself.
When you specify a quotation character, you must specify an escape character. GPSS reads any
content between quote characters as-is, except for escaped characters.

escape: escape_char
Specifies the single ASCII character used to escape special characters (for example, the
delimiter, eol prefix, quote, OF escape itself). Therdefault escape character is empty.
When you specify an escape character and do not specify a quotation character, GPSS escapes
only the delimiter, end-of-line prefix, and escape itself.
When you specify both an escape character and a quotation character, GPSS escapes only these
characters.

json
When you specify the json data format, GPSS can read the data as a single JSON object or as a
single JSON record per line.

column:
A single column name/type mapping.

name: column_name
The name of the key or value column. column_name must match the column name of the target
Tanzu Greenplum table.

type: json | jsonb | gp_jsonb | gp_json
The data type of the column.

is_jsonl: boolean

295

Tanzu Greenplum Streaming Server

Identifies whether or not GPSS reads the JSON data as a single object or single-record-per-line. The
default is fa1se, GPSS reads the JSON data as a single object.

newline: newline_str
A string that specifies the new line character(s) that end each JSON record. The default newline is
"\n".

meta:
The data type and field name of the RabbitMQ meta data. meta: must specify the §son or jsonb
(Greenplum 6 only) data format, and a single 5 son-type column.

The available RabbitMQ meta data properties for a streaming source include:
e stream (text) - the RabbitMQ stream name
e offset (bigint) - the message offset
The available RabbitMQ meta data properties for a queue source include:
¢ queue (text) - the RabbitMQ queue name
e messageld (text) - the message identifier
e correlationId (text) - the correlation identifier
e timestamp (bitint) - the time that the message was added to the RabbitMQ queue

You can load any of these properties into the target table with a mapping, or use a property in the
update or merge criteria for a load operation.

encoding: char_set
The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, Or §son format. GPSS supports the character sets identified in Character
Set Support in the Tanzu Greenplum documentation.

transformer:

Input data transform block. An input data transformer is a plugin, a set of go functions that transform
the data after it is read from the source. The semantics of the transform are function-specific. You
specify the library and function names in this block, as well as the properties that GPSS passes to
these functions:

path: path_to_plugin_transform_library
The file system location of the plugin transformer library on the Tanzu Greenplum streaming
server server host.
on_init: plugin_transform_init_name
The name of an initialization function that GPSS calls when it loads the transform library.
transform: plugin_transform_name
The name of the transform function. GPSS invokes this function for every message it reads.
properties: plugin_transform_property name: property value
One or more property name and value pairs that GPSS passes to plugin_transform_init_name
and plugin_transform_name.

properties:

RabbitMQ configuration property names and values.

rmaq_property_name

296

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

task:

Tanzu Greenplum Streaming Server

The name of a RabbitMQ property.
rmq_property_value
The RabbitMQ property value.

The batch size and commit window.

batch_size:
Controls how GPSS commits data to Tanzu Greenplum. You may specify both max count
and interval ms as long as both values are not zero (0). Try setting and tuning interval ms
to your environment; introduce a max_count setting only if you encounter high memory usage
associated with message buffering.

max_count: number_of_rows
The number of rows to batch before triggering an 1nseRT operation on the Tanzu Greenplum
table. The default value of max count is 0, which instructs GPSS to ignore this commit trigger
condition.

interval_ms: wait_time
The minimum amount of time to wait (milliseconds) between each TNSERT operation on the
table. The default value is 5000.

idle_duration_ms: idle_time
The maximum amount of time to wait (milliseconds) for the first batch of data. When you use
this property to enable lazy load, GPSS waits until RabbitMQ data is available before locking
the target Greenplum table. You can specify:

e 0 (lazy load is deactivated)
e -1 (lazy load is activated, the job never stops), or

e apositive value (lazy load is activated, the job stops after idle_time duration of no data in
the RabbitMQ queue or stream)

The default value is 0.

window_size: num_batches
The number of batches to read before running window statement. The default batch interval
is 0.

window_statement: udf_or_sql to run
A user-defined function or SQL command(s) that you want to run after GPSS reads
window size number of batches. The default is null, no command to run.

prepare_statement: udf or_sql _to run
A user-defined function or SQL command(s) that you want GPSS to run before it executes the
job. The default is null, no command to run.

teardown_statement: udf _or_sql_to run
A user-defined function or SQL command(s) that you want GPSS to run after the job stops.
GPSS runs the function or command(s) on job success and job failure. The default is null, no
command to run.

option: Properties

schedule:

297

alert:

Tanzu Greenplum Streaming Server

Controls the frequency and interval of restarting jobs.

retry_interval: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

max_retries: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

running_duration: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

auto_stop restart_interval: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
running duration.

max_restart_times: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
running duration. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

quit_at_eof after: clock_time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

command: command_to_run
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB STATUS, and $GPSSJOB_DETAIL.

workdir: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

timeout: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (h), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

298

Tanzu Greenplum Streaming Server

<property>: {{<template var>}}
For example:
max retries: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, Of gpsscli load command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the load configuration file. For example, if you create a
table as follows:

CREATE TABLE "MyTable" (cl text);
Your YAML configuration file would refer to the table name as:

targets:
- gpdb:
tables:
- table: '"MyTable"'

You can specify backslash escape sequences in the CSV delimiter, quote, and escape options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

Load data from RabbitMQ as defined in the Version 3 configuration file named loadfromrmg v3.yaml:
gpsscli load loadfromrmg v3.yaml

Example loadfromrmg v3.yaml configuration file:

version: v3

targets:

- gpdb:
host: mdw-1
port: 15432
user: gpadmin

password: changeme

299

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

database

work sch

: testdb

ema: public

error limit: 25
tables:
- table: tbll
schema: public
mode:

insert {}

sources:
- rabbitmg:
server:

queue: t

vhost: g

data_con
csv:

colu

deli

quot

null string:

esca

force_not_null:

gpadmin:changeme@mdw-1:5672

est
padmin
tent:

mns: [
miter:

e; mrm

pe: '\

]

non
’

TNAT

"el,c2"

fill missing_fields: true

properti

eof.when.idle:

option:

schedule:

See Also

es:

{3

1500

gpsscli-v3.yaml submit, gpsscli submit, gpsscli load

rabbitmqg-v2.yaml

GPSS load configuration file for a RabbitMQ data source (version 2).

Synopsis

DATABASE: <db_name>

USER: <user_

name>

PASSWORD: <password>

HOST: <host>

PORT: <greenplum port>

VERSION: 2
RABBITMQ:
INPUT:
SOURCE

SERVER:

VIRTUALHOST: <gpss_vhost>

{ sT

[FALLBACK_OFFSET:

DATA:
COLU

REAM:

MNS:
NAME :

<name> | QUEUE:

{ <column name>

<name> }

{ earliest

latest 1}]

__IGNORED _

<rmg_user>:<rmqg password>@<rmg host>:<rmg port>

}

Tanzu Greenplum Streaming Server

300

Tanzu Greenplum Streaming Server

TYPE: <column_data_type>
[coo]
FORMAT: <value data format>
[[DELIMITED OPTION:
DELIMITER: <delimiter string>
[EOL _PREFIX: <prefix string>]
[QUOTE: <quote_char>]
[ESCAPE: <escape_char>]] |
[CSV_OPTION:
[DELIMITER: <delim char>]
[QUOTE: <quote_char>]
[NULL_STRING: <nullstr val>]
[ESCAPE: <escape_char>]
[FORCE_NOT_NULL: <columns>]
[FILL _MISSING_FIELDS: <boolean>]] |
[JSONL_OPTION:
[NEWLINE: <newline_ str>]] |
[CUSTOM_OPTION:
NAME: <udf_ name>
PARAMSTR: <udf parameter string>]]
[META:
COLUMNS :
- NAME: <meta_column_name>
TYPE: { json | jsonb }
FORMAT: json]
[TRANSFORMER:
PATH: <path_to_plugin_transform_library>
ON_INIT: <plugin_transform_init name>
TRANSFORM: <plugin_ transform name>
PROPERTIES:
<plugin_transform property name>: <property value>
L ... 11
[FILTER: <filter string>]
[ENCODING: <char_set>]
[ERROR_LIMIT: { <num_errors> | <percentage errors> }]
{ OUTPUT:
[SCHEMA: <output_schema_ name>]
TABLE: <table_ name>
[FILTER: <output filter string>]
[MODE: <mode>]
[MATCH_COLUMNS:
- <match_column_name>
L. 1]
[ORDER COLUMNS:
- <order_column_name>
[... 1]
[UPDATE COLUMNS:
- <update_column_name>
[... 1]
[UPDATE CONDITION: <update condition>]
[DELETE CONDITION: <delete condition>]
[TRANSFORMER:
TRANSFORM: <udf transform udf name>
PROPERTIES:
<udf transform property name>: <property value>
[coo 1
COLUMNS :
- <udf_transform_column_name>

L ... 11

301

Tanzu Greenplum Streaming Server

[MAPPING:
- NAME: <target column_name>
EXPRESSION: { <source_ column name> | <expression> }
[... 1
I
<target column name> : { <source_ column_name> | <expression> }

P A
OUTPUTS:
- TABLE: <table name>
[MODE: <mode>]
[MATCH_COLUMNS:
- <match_column_name>
(... 11
[ORDER_COLUMNS :
- <order_column_name>
L ... 11
[UPDATE_COLUMNS:
- <update_column_name>
(... 11
[UPDATE_CONDITION: <update condition>]
[DELETE_CONDITION: <delete condition>]
[TRANSFORMER:
TRANSFORM: <udf transform udf name>
PROPERTIES:
<udf transform property name>: <property value>
[coo 1
COLUMNS :
- <udf_transform_column_name>

A

[MAPPING:
- NAME: <target column_name>
EXPRESSION: { <source column_ name> | <expression> }
[coo 1
\
<target_column_name> : { <source_column_name> | <expression> }
L ... 11
[...1 1}
[METADATA:
[SCHEMA: <metadata_schema_ name>]]
[COMMIT:

SAVE_FAILING_BATCH: <boolean>
RECOVER_FAILING_BATCH: <boolean> (Beta)
MAX ROW: <num_rows>
MINIMAL INTERVAL: <wait time>
CONSISTENCY: { strong | at-least | at-most | none }
IDLE DURATION: <idle time>]

[TASK:
POST_BATCH_SQL: <udf_or_sqgl_to_run>
BATCH INTERVAL: <num_ batches>
PREPARE_SQL: <udf_or_sqgl_to_run>
TEARDOWN_SQL: <udf_or_sqgl_to_run>]

[PROPERTIES:
<rmg_property name>: <rmg property value>
[... 11

[SCHEDULE:

RETRY INTERVAL: <retry time>

MAX RETRIES: <num_retries>

RUNNING DURATION: <run_time>

AUTO STOP_RESTART INTERVAL: <restart time>

302

Tanzu Greenplum Streaming Server

MAX RESTART TIMES: <num_restarts>

QUIT AT EOF AFTER: <clock time>]
[ALERT:

COMMAND: <command_to_run>

WORKDIR: <directory>

TIMEOUT: <alert time>]

Where you may specify any property value with a template variable that GPSS substitutes at runtime using
the following syntax:

<PROPERTY:> {{<template var>}}

Description

You specify load configuration parameters for the gpssc1i utilities in a YAML-formatted configuration file.
(This reference page uses the name rabbitmg-v2.yaml when referring to this file; you may choose your
own name for the file.) Load parameters include VMware Tanzu Greenplum connection and target table
information, RabbitMQ data source information, and error and commit thresholds.

The gpsscli utility processes the YAML configuration file in order, using indentation (spaces) to determine
the document hierarchy and the relationships between the sections. The use of white space in the file is
significant, and keywords are case-sensitive.

Keywords and Values

Tanzu Greenplum Options

DATABASE: <db name>
The name of the Tanzu Greenplum.
USER: <user name>
The name of the Tanzu Greenplum user/role. This user_name must have permissions as described
in the Tanzu Greenplum streaming server documentation.
PASSWORD: <password>
The password for the Tanzu Greenplum user/role.
HOST: <host>
The host name or IP address of the Tanzu Greenplum coordinator host.
PORT: <greenplum port>
The port number of the Tanzu Greenplum server on the coordinator host.
VERSION: 2
The version of the GPSS configuration file. You must specify vErston: 2 when you configure the
DATA block in the file.

RABBITMQ:INPUT: Options

SOURCE
RabbitMQ input configuration parameters.

SERVER: <rmg user:rmq password@rmg host:rmg port>
The RabbitMQ server connection string; includes the user name with which RabbitMQ logs in to the
broker, the password for rmq_user, the hostname or IP address of the RabbitMQ server, and the port

303

Tanzu Greenplum Streaming Server

number on which the RabbitMQ server is listening. rmq_user and rmq_password are optional, and
must be omitted when loading from a RabbitMQ queue over a TLS-encrypted connection.
VIRTUALHOST: <gpss_ vhost>

The RabbitMQ virtual host that represents the GPSS server.

STREAM: <name>
The name of the RabbitMQ stream from which to read the data. You may specify only one of sTREAM
Or QUEUE.

QUEUE: <name>
The name of the RabbitMQ queue from which to read the data. You may specify only one of sTrREAM
Or QUEUE.

FALLBACK OFFSET: { earliest | latest }
When reading from a RabbitMQ stream, specifies the behaviour of GPSS when it detects a message
offset gap. When set to earliest, GPSS automatically resumes a load operation from the earliest
available published message. When set to 1atest, GPSS loads only new messages to the
RabbitMQ stream.

DATA
The RabbitMQ message value field names, data types, and format. You must specify all RabbitMQ

data elements in the order in which they appear in the RabbitMQ message.
COLUMNS:NAME: <column name>

The name of a data column. column name must match the column name of the target Tanzu
Greenplum table. Specify 1GNORED to omit this RabbitMQ message data element from the load
operation.

The default source-to-target data mapping behaviour of GPSS is to match a column name as defined
in COLUMNS : NAME with a column name in the target Tanzu Greenplum TaBLE. You can override the
default mapping by specifying a MAPPTING block.

COLUMNS:TYPE: <data type>
The data type of the column. You must specify an equivalent data type for each non-ignored

RabbitMQ message data element and the associated Tanzu Greenplum table column.
FORMAT: <data format>

The format of the RabbitMQ message data. You may specify a FORMAT Of binary, csv, custom,
delimited, json, or jsonl for the data, with some restrictions.

e Dbinary: When you specify the binary data format, you must define only a single bytea type
column in COLUMNS.

* csv: When you specify the csv data format, the message content cannot contain line ending
characters (CR and LF).

¢ custom: When you specify the custom data format, you must provide a cusToM OPTION.
e delimited: When you specify the delimited data format, you must provide a DELIMITED OPTION.

¢ json: When you specify the §son data format, you must define only a single json type column in
COLUMNS.

e jsonl: When you specify the jsonl data format, you may provide a JsonL_opTION to define a
newline character.

CSV_OPTION

304

Tanzu Greenplum Streaming Server

When you specify FORMAT: csv, you may provide the following options:

DELIMITER: <delim char>
Specifies a single ASCII character that separates columns within each message or row of data. The
default delimiter is a comma ().

QUOTE: <quote char>
Specifies the quotation character. Because GPSS does not provide a default value for this property,
you must specify a value.

NULL STRING: <nullstr val>
Specifies the string that represents the null value. Because GPSS does not specify a default value
for this property, you must specify a value.

ESCAPE: <escape char>
Specifies the single character that is used for escaping data characters in the content that might
otherwise be interpreted as row or column delimiters. Make sure to choose an escape character that
is not used anywhere in your actual column data. Because GPSS does not provide a default value
for this property. you must specify a value.

FORCE NOT NULL: <columns>
Specifies a comma-separated list of column names to process as though each column were quoted
and hence not a NULL value. For the default nul1l string (nothing between two delimiters), missing
values are evaluated as zero-length strings.

FILL MISSING FIELDS: <boolean>
Specifies the action of GPSS when it reads a row of data that has missing trailing field values (the
row has missing data fields at the end of a line or row). The default value is false, GPSS returns an
error when it encounters a row with missing trailing field values.
If set to true, GPSS sets missing trailing field values to nurL. Blank rows, fields with a NoT NULL
constraint, and trailing delimiters on a line will still generate an error.

CUSTOM OPTION
Optional. When you specify FORMAT: custom, you are required to provide the cusToM opPTION
properties. This block identifies the name and the arguments of a custom formatter user-defined
function.

NAME: <udf name>
The name of the custom formatter user-defined function.

PARAMSTR: <udf parameter string>
A string specifying the comma-separated list of arguments to pass to the custom formatter user-
defined function.

JSONL_OPTION
Optional. When you specify FORMAT: jsonl, you may choose to provide the JsonL opTION
properties.

NEWLINE: <newline str>
A string that specifies the new line character(s) that end each JSON record. The default newline is
"\n".

DELIMITED OPTION
Optional. When you specify FORMAT: delimited, you may choose to provide the
DELIMITER OPTION properties.

DELIMITER: <delimiter string>
When you specify the de1imited format, delimiter_string is required and must identify the data
element delimiter. delimiter_string may be a multi-byte value, and up to 32 bytes in length. It may not
contain quote and escape characters.

305

Tanzu Greenplum Streaming Server

EOL PREFIX: <prefix string>
Specifies the prefix before the end of line character (\n) that indicates the end of a row. The default
prefix is empty.

QUOTE: <quote char>
Specifies the single ASCII quotation character. The default quote character is empty.
If you do not specify a quotation character, GPSS assumes that all columns are unquoted. If you do
not specify a quotation character and do specify an escape character, GPSS assumes that all
columns are unquoted and escapes the delimiter, end-of-line prefix, and escape itself.
When you specify a quotation character, you must specify an escape character. GPSS reads any
content between quote characters as-is, except for escaped characters.

ESCAPE: <escape char>
Specifies the single ASCII character used to escape special characters (for example, the delimiter,
end-of-line prefix, quote, or escape itself). Therdefault escape character is empty.
When you specify an escape character and do not specify a quotation character, GPSS escapes
only the delimiter, end-of-line prefix, and escape itself.
When you specify both an escape character and a quotation character, GPSS escapes only these
characters.

META :
The field name, type, and format of the RabbitMQ meta data. META must specify a single json or
jsonb (Greenplum 6 only) type column and FORMAT: json.

The available RabbitMQ meta data properties for a streaming source include:
e stream (text) - the RabbitMQ stream name
o offset (bigint) - the message offset
The available RabbitMQ meta data properties for a queue source include:
¢ queue (text) - the RabbitMQ queue name
e messageld (text) - the message identifier
e correlationId (text) - the correlation identifier
e timestamp (bitint) - the time that the message was added to the RabbitMQ queue

TRANSFORMER :
Input data transform block. An input data transformer is a plugin, a set of go functions that transform
the data after it is read from the source. The semantics of the transform are function-specific. You
specify the library and function names in this block, as well as the properties that GPSS passes to
these functions:

PATH: <path to plugin transform library>
The file system location of the plugin transformer library on the Tanzu Tanzu Greenplum streaming
server server host.

ON INIT: <plugin transform init name>
The name of an initialization function that GPSS calls when it loads the transform library.

TRANSFORM: <plugin transform name>
The name of the transform function. GPSS invokes this function for every message it reads.

PROPERTIES: <plugin transform property name: property value>
One or more property name and value pairs that GPSS passes to plugin_transform_init_name and
plugin_transform_name.

306

Tanzu Greenplum Streaming Server

FILTER: <filter string>
The filter to apply to the RabbitMQ input messages before GPSS loads the data into Tanzu
Greenplum. If the filter evaluates to true, GPSS loads the message. If the filter evaluates to false,
the message is dropped. filter_string must be a valid SQL conditional expression and may reference
one or more DATA column names.

ENCODING: <char set>
The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, Or json format. GPSS supports the character sets identified in Character
Set Support in the Tanzu Greenplum documentation.

ERROR LIMIT: { <num_errors> | <percentage errors> }
The error threshold, specified as either an absolute number or a percentage. gpsscli load exits
when this limit is reached. The default ErrOR LIMIT is zero; GPSS deactivates error logging and
stops the load operation when it encounters the first error. Due to a limitation of the Tanzu Greenplum
external table framework, GPSS does not accept ERROR LIMIT: 1.

RABBITMQ:OUTPUT: Options

ﬁ You must specify only one of the ouTpuT or ouTruTs blocks. You cannot specify both.

SCHEMA: <output schema name>
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.

TABLE: <table name>

The name of the Tanzu Greenplum table into which GPSS loads the RabbitMQ data.

FILTER: <output filter string>
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. output filter string must be a valid SQL conditional expression and may reference
one or more META Of VALUE column names.

MODE: <mode>

The table load mode. Valid mode values are INSERT, MERGE, or UPDATE. The default value is INSERT.

UPDATE - Updates the target table columns that are listed in upDATE corLuMns when the input
columns identified in MaTCH corumns match the named target table columns and the optional
UPDATE CONDITION is true.

UPDATE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MERGE - Inserts new rows and updates existing rows when:
e columns are listed in UPDATE COLUMNS,
e themaTcH coLumns target table column values are equal to the input data, and
e an optional UPDATE CONDITION is specified and met.

Deletes rows when:

e themaTcH corLumns target table column values are equal to the input data, and

307

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

Tanzu Greenplum Streaming Server

e anoptional DELETE CONDITION is specified and met.

New rows are identified when the MaTcH corumMns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row from the
source file is inserted, not only the MaTCH corLuMns and UPDATE COLUMNS. If there are multiple new
MATCH COLUMNS values in the input data that are the same, GPSS inserts or updates the target table
using a random matching input row. When you specify orbEr coruMns, GPSS sorts the input data
on the specified column(s) and inserts or updates from the input row with the largest value.
MERGE is not supported if the target table column name is a reserved keyword, has capital letters, or
includes any character that requires quotes (" ") to identify the column.

MATCH COLUMNS:
Required if MODE is MERGE OF UPDATE.

<match column name>
Specifies the column(s) to use as the join condition for the update. The attribute value in the
specified target column(s) must be equal to that of the corresponding source data column(s) in order
for the row to be updated in the target table.

ORDER COLUMNS :
Optional. May be specified in MERGE MODE to sort the input data rows.

<order column name>
Specify the column(s) by which GPSS sorts the rows. When multiple matching rows exist in a batch,
ORDER COLUMNS is used with MATCH coLumMns to determine the input row with the largest value; GPSS

uses that row to write/update the target.
UPDATE COLUMNS :

Required if MODE is MERGE OF UPDATE.

<update column name>
Specifies the column(s) to update for the rows that meet the MaTcr corumns criteria and the optional
UPDATE CONDITION.

UPDATE CONDITION: <update condition>
Optional. Specifies a boolean condition, similar to that which you would declare in a wHERE clause,
that must be met in order for a row in the target table to be updated (or inserted, in the case of a
MERGE).

DELETE CONDITION: <delete condition>
Optional. In MERGE MODE, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
MATCH COLUMNS criteria.

TRANSFORMER :

Optional. Output data transform block. An output data transformer is a user-defined function (UDF)
that transforms the data before it is loaded into Tanzu Greenplum. The semantics of the UDF are
transform-specific.

ﬁ GPSS currently supports specifying only one of the MapPTNG or (UDF) TRANSFORMER
blocks in the load configuration file, not both.

TRANSFORM: <udf transform udf name>

308

Tanzu Greenplum Streaming Server

The name of the output transform UDF. GPSS invokes this function for every batch of data it writes
to Tanzu Greenplum.
PROPERTIES: <udf transform property name: property value>
One or more property name and value pairs that GPSS passes to udf_transform_udf name.
COLUMNS: <udf transform column name>
The name of one or more columns involved in the transform.
MAPPING:

Optional. Overrides the default source-to-target column mapping. GPSS supports two mapping

syntaxes.
ﬁ GPSS currently supports specifying only one of the MapPING or (UDF) TRANSFORMER
blocks in the load configuration file, not both.
ﬁ When you specify a MAPPING, ensure that you provide a mapping for all RabbitMQ

message data elements of interest. GPSS does not automatically match column
names when you provide a MAPPING.

NAME: <target column name>

Specifies the target Tanzu Greenplum table column name.

EXPRESSION: { <source column name> | <expression> }
Specifies a RabbitMQ coruMys : NAME (source_column_name) or an expression. When you specify an
expression, you may provide a value expression that you would specify in the seLecT list of a query,
such as a constant value, a column reference, an operator invocation, a built-in or user-defined
function call, and so on.

<target column name>: { <source column name> | <expression> }
When you use this MaPPING syntax, specify the target_column_name and {source_column_name
expression} as described above.

RABBITMQ:OUTPUTS: Options

ﬁ You must specify only one of the ouTpuT or ouTruTs blocks. You cannot specify both.

TABLE: <table name>
The name of a Tanzu Greenplum table into which GPSS loads the RabbitMQ data.
other options

As specified in the RABBITMQ:OUTPUT: Options section.
RABBITMQ:METADATA: Options

SCHEMA: <metadata schema name>
The name of the Tanzu Greenplum schema in which GPSS creates external tables. The default
metadata schema name is RABBITMQ:OUTPUT : SCHEMA.

309

Tanzu Greenplum Streaming Server

Tanzu Greenplum COMMIT: Options

COMMIT:
Controls how GPSS commits a batch of data to Tanzu Greenplum. You may specify both Max row
and MINIMAL INTERVAL as long as both values are not zero (0). Try setting and tuning
MINIMAL INTERVAL to your environment; introduce a Max row setting only if you encounter high
memory usage associated with message buffering.

SAVE FAILING BATCH: <boolean>
Determines whether or not GPSS saves data into a backup table before it writes the data to Tanzu
Greenplum. Saving the data in this manner aids recovery when GPSS encounters errors during the
evaluation of expressions. The default is false; GPSS does not use a backup table, and returns
immediately when it encounters an expression error. When you set this property to true, GPSS
writes both the good and the bad data in the batch to a backup table named gpssbackup <jobhash>,
and continues to process incoming messages. You must then manually load the good data from the
backup table into Greenplum or set RECOVER FATILING BATCH (Beta) to true to have GPSS
automatically reload the good data.

ﬁ Using a backup table to hedge against mapping errors may impact performance,
especially when the data that you are loading has not been cleaned.

RECOVER FAILING BATCH: <boolean> (Beta)
When set to true and saVE FAILING BATCH is also true, GPSS automatically reloads the good
data in the batch and retains only the error data in the backup table. The default value is false;
GPSS does not process the backup table.

ﬁ Enabling this property requires that GPSS has the Tanzu Greenplum privileges to
create a function.

MAX ROW: <number of rows>
The number of rows to batch before triggering an I1NSERT operation on the Tanzu Greenplum table.
The default value of Max row is 0, which instructs GPSS to ignore this commit trigger condition.
MINIMAL INTERVAL: <wait time>
The minimum amount of time to wait (milliseconds) between each TnNSERT operation on the table. The
default value is 5000.
CONSISTENCY: { strong | at-least | at-most | none }
Specify how GPSS should manage message offsets when it acts as a consumer of a RabbitMQ
queue or stream. Valid values are at-1east (GPSS stores the offsets before commit), at-most
(GPSS stores the offsets after commit), and none. For streams, GPSS also supports strong
consistency. The default value is at-1east. Refer to Understanding RabbitMQ Message Offset

Management for more detailed information.
IDLE DURATION: <idle time>

The maximum amount of time to wait (milliseconds) for the first batch of data. When you use this
property to enable lazy load, GPSS waits until RabbitMQ data is available before locking the target
Greenplum table. You can specify:

310

Tanzu Greenplum Streaming Server

e 0 (lazy load is deactivated)
e -1 (lazy load is activated, the job never stops), or

e apositive value (lazy load is activated, the job stops after idle_time duration of no data in
the RabbitMQ queue or stream) The default value is 0.

Tanzu Greenplum TASK: Options

TASK:
Controls the running and scheduling of a periodic (maintenance) task.
POST BATCH SQL: <udf or sgl to run>
The user-defined function or SQL command(s) that you want to run after the specified number of
batches are read from RabbitMQ. The default is null.
BATCH INTERVAL: <num batches>
The number of batches to read before running udf_or_sql_to_run. The default batch interval is 0.
PREPARE SQL: <udf or sgl to run>
The user-defined function or SQL command(s) that you want GPSS to run before it executes the job.
The default is null, no command to run.
TEARDOWN SQL: <udf or sgl to run>
The user-defined function or SQL command(s) that you want GPSS to run after the job stops. GPSS
runs the function or command(s) on job success and job failure. The default is null, no command to
run.

RabbitMQ PROPERTIES: Options

PROPERTIES:

RabbitMQ configuration property names and values.
<rmg property name>

The name of a RabbitMQ property.
<rmg_property value>

The RabbitMQ property value.

Job SCHEDULE: Options

SCHEDULE :
Controls the frequency and interval of restarting jobs.

RETRY INTERVAL: <retry time>
The period of time that GPSS waits before retrying a failed job. You can specify the time interval in
day (@), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix units. The
default retry interval is 5m (5 minutes).

MAX RETRIES: <num retries>
The maximum number of times GPSS attempts to retry a failed job. The default is 0, do not retry. If
you specify a negative value, GPSS retries the job indefinitely.

RUNNING DURATION: <run time>
The amount of time after which GPSS automatically stops a job. GPSS does not automatically stop
a job by default.

AUTO STOP RESTART INTERVAL: <restart time>
The amount of time after which GPSS restarts a job that it stopped due to reaching
RUNNING DURATION.

31

Tanzu Greenplum Streaming Server

MAX RESTART TIMES: <num restarts>
The maximum number of times that GPSS restarts a job that it stopped due to reaching
RUNNING DURATION. The default is O, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

QUIT AT EOF AFTER: <clock time>
The clock time after which GPSS stops a job every day when it encounters an EOF. By default,
GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job when the
current time is before clock time, even when GPSS encounters an EOF.

Job ALERT: Options
Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

COMMAND: <command to run>
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB STATUS, and $GPSSJOB_DETAIL.

WORKDIR: <directory>
The working directory for command_to_run. The default working directory is the directory from which
you started the GPSS server process. If you specify a relative path, it is relative to the directory
from which you started the GPSS server process.

TIMEOUT: <alert time>
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (h), minute (m), or second (s)
integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<PROPERTY>: {{<template var>}}
For example:
MAX RETRIES: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

template\ var=value opﬁontothe gpsscli dryrun, gpsscli submit, OF gpsscli load command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

312

Tanzu Greenplum Streaming Server

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the rabbitmg-v2.yaml configuration file. For example, if
you create a table as follows:

CREATE TABLE "MyTable" ("MyColumn" text);
Your rabbitmg-v2.yaml YAML configuration file would refer to the above table and column names as:

COLUMNS:
- name: '"MyColumn"'
type: text
OUTPUT:
TABLE: '"MyTable"'

You can specify backslash escape sequences in the CSV DELIMITER, QUOTE, and ESCAPE options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

Load data from RabbitMQ as defined in the Version 2 configuration file named rmg2greenplumv2.yaml:
gpsscli load rmg2greenplumv2.yaml

Example rmg2greenplumv?.yaml configuration file:

DATABASE: testdb
USER: gpadmin
PASSWORD: changeme
HOST: mdw-1
PORT: 15432
VERSION: 2
RABBITMOQ:
INPUT:
SOURCE:
SERVER: gpdmin:changeme@localhost:5672
QUEUE: test
VIRTUALHOST: gpadmin

DATA:
COLUMNS:
- NAME: cl
TYPE: int
- NAME: c2
TYPE: int

FORMAT: CSV
CSV_OPTION:
DELIMITER: ","
QUOTE: "'"
NULL STRING: "NA"
ESCAPE: '\'
FORCE_NOT NULL: "cl,c2"
FILL MISSING FIELDS: true
ERROR_LIMIT: 25

313

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Tanzu Greenplum Streaming Server

OUTPUT:
SCHEMA: "public"
TABLE: tbl int text column
MODE: INSERT

MAPPING:
- NAME: cl
EXPRESSION: cl::int
- NAME: c2
EXPRESSION: c2::int
METADATA:
SCHEMA: staging_schema
COMMIT:

MAX_ROW: 1000

MINIMAL_ INTERVAL: 200
PROPERTIES:

eof.when.idle: 1500

gos.prefetch.count: 10

See Also

rabbitmg-v3.yaml, gpsscli load, gpsscli submit

s3source-v3.yaml (Beta)

GPSS load configuration file for an s3 data source (version 3).
Synopsis
version: v3

targets:
- gpdb:
host: <host>
port: <greenplum port>
user: <user_name>
password: <password>
database: <db_name>
work schema: <work_ schema name>
error_ limit: <num_errors> | <percentage_ errors>
filter expression: <filter string>
tables:
- table: <table name>
schema: <schema_name>
mode:
specify a single mode property block (described below)
insert: {}
update:

<mode_specific_property>: <value>

merge:

<mode_specific_property>: <value>

mapping:
<target column_name> : <source_ column_name> | <expression>

314

filter: <output_filter_ string>

sources:
= 838
uri:
- <s3_file_path>

content:
csv:
<column_spec>
<other props>
encoding: <char set>
s3param:
version: <cfg_version>
accessid: <s3 access_id>
secret: <s3 secret>
chunksize: <seg_buf_ size>

threadnum: <max num>

gpcheckcloud newline: <newline_ char>

autocompress: <boolean>
encryption: <boolean>
proxy: <url>
verifycert: <boolean>
server_ side encryption: <boolean>
low_speed limit: <bps limit>
low_speed_time: <wait secs>
option:
schedule:
max_ retries: <num retries>
retry interval: <retry time>

running_duration: <run_time>

auto stop restart interval: <restart time>

max_restart_times: <num_restarts>

quit at eof after: <clock time>
alert:

command: <command_to_run>

workdir: <directory>

timeout: <alert_time>

Tanzu Greenplum Streaming Server

Where the mode_specific_propertys that you can specify for update and merge mode follow:

update:
match columns: [<match column_ names>]
order columns: [<order column_names>]
update columns: [<update column_ names>]

update condition: <update_ condition>

merge:
match columns: [<match column names>]
update columns: [<update column names>]
order columns: [<order column names>]

update condition: <update condition>
delete_condition: <delete_condition>

315

Tanzu Greenplum Streaming Server

And where you may specify any property value with a template variable that GPSS substitutes at runtime
using the following syntax:

<property:> {{<template var>}}
Description

ﬁ Version 3 of the GPSS load configuration file is different in both content and format than
previous versions of the file. Certain symbols used in the GPSS version 1 and 2
configuration file reference page syntax have different meanings in version 3 syntax:

e Brackets [] are literal and are used to specify a list in version 3. They are no
longer used to signify the optionality of a property.

e Curly braces {} are literal and are used to specify YAML mappings in version 3
syntax. They are no longer used with the pipe symbol (|) to identify a list of
choices.

You specify the configuration properties for a VMware Tanzu Greenplum streaming server (GPSS) s3 load
job in a YAML-formatted configuration file that you provide to the gpsscli submit Or gpsscli load
commands. There are three types of configuration properties in this file - those that identify the Tanzu
Greenplum connection and target table, properties specific to the s3 data source that you will load into
Greenplum, and job-related properties.

This reference page uses the name s3source-v3.yaml to refer to this file; you may choose your own name
for the file.

The gpsscli utility processes the YAML configuration file keywords in order, using indentation (spaces) to
determine the document hierarchy and the relationships between the sections. The use of white space in
the file is significant. Keywords are not case-sensitive.

Keywords and Values

version Property

version: v3
The version of the configuration file. You must specify version: v3.

targets:gpdb Properties

host: host
The host name or IP address of the Tanzu Greenplum coordinator host.
port: greenplum_port
The port number of the Tanzu Greenplum server on the coordinator host.
user: user_name
The name of the Tanzu Greenplum user/role. This user name must have permissions as described
in the Configuring VMware Tanzu Greenplum Role Privileges.
password: password
The password for the Tanzu Greenplum user/role.

316

Tanzu Greenplum Streaming Server

database: db_name
The name of the Tanzu Greenplum.

work_schema: work_schema_name
The name of the Tanzu Greenplum schema in which GPSS creates internal tables. The default
work_schema_name is public.

error_limit: num_errors | percentage_errors
The error threshold, specified as either an absolute number or a percentage. GPSS stops running the
job when this limit is reached.

filter_expression: filter_string
The filter to apply to the input data before GPSS loads the data into Tanzu Greenplum. If the filter
evaluates to true, GPSS loads the message. If the filter evaluates to false, the message is
dropped. filter_string must be a valid SQL conditional expression and may reference one or more
source value, key, or meta column names.

tables:

The Tanzu Greenplum tables, and the data that GPSS will load into each.

table: table_name
The name of the Tanzu Greenplum table into which GPSS loads the data.
schema: schema_name
The name of the Tanzu Greenplum schema in which table_name resides. Optional, the default
schema is the public schema.
mode:
The table load mode; insert, merge, or update. The default mode is insert.

ﬁ update and merge are not supported if the target table column name is a reserved
keyword, has capital letters, or includes any character that requires quotes (" ") to
identify the column.

insert:
Inserts source data into Greenplum.
update:
Updates the target table columns that are listed in update columns when the input columns
identified in match columns match the named target table columns and the optional
update condition is true.
merge:
Inserts new rows and updates existing rows when:

e columns are listed in update columns,
e thematch columns target table column values are equal to the input data, and

e anoptional update condition is specified and met.

Deletes rows when:

e thematch columns target table column values are equal to the input data, and

317

Tanzu Greenplum Streaming Server

e anoptional delete condition is specified and met.

New rows are identified when the match columns value in the source data does not have a
corresponding value in the existing data of the target table. In those cases, the entire row
from the source file is inserted, not only the match columns and update columns. If there
are multiple new match columns values in the input data that are the same, GPSS inserts or
updates the target table using a random matching input row. When you specify

order columns, GPSS sorts the input data on the specified column(s) and inserts or
updates from the input row with the largest value.

mode_property _name: value
The name to value mapping for a mode property. Each mode supports one or more of the
following properties as specified in the Synopsis.

match_columns: [match_column_names]
A comma-separated list that specifies the column(s) to use as the join condition for the
update. The attribute value in the specified target column(s) must be equal to that of the
corresponding source data column(s) in order for the row to be updated in the target table.
Required when mode is merge Or update.

order_columns: [order_column_names]
A comma-separated list that specifies the column(s) by which GPSS sorts the rows. When
multiple matching rows exist in a batch, order columns is used with match columns to
determine the input row with the largest value; GPSS uses that row to write/update the target.
Optional. May be specified in merge mode to sort the input data rows.

update_columns: [update_column_names]
A column-sparated list that specifies the column(s) to update for the rows that meet the
match columns criteria and the optional update condition.
Required when mode is merge Or update.

update_condition: update condition
Specifies a boolean condition, similar to that which you would declare in a wHERE clause, that
must be met in order for a row in the target table to be updated (or inserted, in the case of a
merge). Optional.

delete_condition: delete_condition
In merge mode, specifies a boolean condition, similar to that which you would declare in a
WHERE clause, that must be met for GPSS to delete rows in the target table that meet the
match columns criteria. Optional.

mapping:
Optional. Overrides the default source-to-target column mapping.

: > Note When you specify a mapping, ensure that you provide a mapping for all source data
elements of interest. GPSS does not automatically match column names when you provide a
mapping block.

target\ _column\ name: source\ column_ name \| expression

target\ column\ name specifies the target Tanzu Greenplum table column name.
GPSS maps this column name to the source column name specified in source\ column
_name, or to an expression. When you specify an expression, you may provide a va

lue expression that you would specify in the "SELECT ' 1list of a query, such as a

318

Tanzu Greenplum Streaming Server

constant value, a column reference, an operator invocation, a built-in or user-de

fined function call, and so on.

filter: output_filter_string
The filter to apply to the output data before GPSS loads the data into Tanzu Greenplum. If the
filter evaluates to true, GPSS loads the message. If the filter evaluates to false, the
message is dropped. output_filter_string must be a valid SQL conditional expression and may
reference one or more META Or VALUE column names.

sources:s3: Options

uri
The path to an s3 file or bucket.
s3 file_path
A URL identifying a file or files on s3 to be loaded. You can specify wildcards in any element
of the path. To load all files in a directory, specify dirname/*.
content:

The file type, field names, and type-specific properties of the file data. You must specify all data
elements in the order in which they appear in the file. And you must specify csv format to read CSV-
or text-format data.

csv
When you specify the csv data format, GPSS reads the data into the list of columns that you
specify. The data content cannot contain line ending characters (CR and LF).

column_spec
The source to Greenplum column mapping. The supported column specification differs for
different data formats as described below.
The default source-to-target data mapping behaviour of GPSS is to match a column name as
defined in source column name, column:name, OF columns:name With a column name in the
target Tanzu Greenplum table. You can override the default mapping by specifying a
mapping: block.

columns:
A set of column name/type mappings. The value [] specifies all columns.

name: column_name
The name of a key or value column. column_name must match the column name of the target
Tanzu Greenplum table.

type: column_data_type
The data type of the column. You must specify an equivalent data type for each data element
and the associated Tanzu Greenplum table column.

delimiter: delim_char
Specifies a single ASCII character that separates columns within each message or row of
data. The default delimiter is a comma ().

encoding: char_set
The source data encoding. You can specify an encoding character set when the source data is of the
csv, custom, delimited, or §son format. GPSS supports the character sets identified in Character

319

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html

Tanzu Greenplum Streaming Server

Set Support in the Tanzu Greenplum documentation.

s3param

The configuration parameters for the s3 data source are the same as those identified for the Tanzu
Greenplum s3 protocol. Refer to the Tanzu Greenplum s3 Protocol Configuration File documentation
for the use and description of these parameters.

You can specify the s3 configuration parameters individually in the GPSS load configuration file.
Alternatively, you can choose to provide the config=<filepath> option in the s3 file path URI to
specify the absolute path of a file on the local file system that contains the configuration parameter
settings.

option: Properties

schedule:

alert:

Controls the frequency and interval of restarting jobs.

retry_interval: retry_time
The period of time that GPSS waits before retrying a failed job. You can specify the time
interval in day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix
units. The default retry interval is 5m (5 minutes).

max_retries: num_retries
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do
not retry. If you specify a negative value, GPSS retries the job indefinitely.

running_duration: run_time
The amount of time after which GPSS automatically stops a job. GPSS does not
automatically stop a job by default.

auto_stop_restart_interval: restart_time
The amount of time after which GPSS restarts a job that it stopped due to reaching
running duration.

max_restart_times: num_restarts
The maximum number of times that GPSS restarts a job that it stopped due to reaching
running duration. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

quit_at_eof after: clock time
The clock time after which GPSS stops a job every day when it encounters an EOF. By
default, GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job
when the current time is before clock time, even when GPSS encounters an EOF.

Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

command: command_to_run
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS.
command_to_run has access to job-related environment variables that GPSS sets, including:
$GPSSJOB_NAME, $GPSSJOB_STATUS, and $GPSSJOB_DETAIL.

320

https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/ref_guide-character_sets.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/data-solutions/tanzu-greenplum/7/greenplum-database/admin_guide-external-g-s3-protocol.html

Tanzu Greenplum Streaming Server

workdir: directory
The working directory for command_to_run. The default working directory is the directory from
which you started the GPSS server process. If you specify a relative path, it is relative to the
directory from which you started the GPSS server process.

timeout: alert_time
The amount of time after a job stops, prompting GPSS to trigger the alert (and run
command_to_run). You can specify the time interval in day (d), hour (1), minute (m), or second
(s) integer units; do not mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the load configuration file.

You specify a template variable value in the load configuration file as follows:

<property>: {{<template var>}}
For example:
max_retries: {{numretries}})
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, Of gpsscli load command.

For example, if the command line specifies:
--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the load configuration file. For example, if you create a
table as follows:

CREATE TABLE "MyTable" (cl text);
Your YAML configuration file would refer to the table name as:

targets:
- gpdb:
tables:
- table: '"MyTable"'

You can specify backslash escape sequences in the CSV delimiter, quote, and escape options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

321

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Examples

Tanzu Greenplum Streaming Server

Submit a job to load data from a CSV file on s3 as defined in the v3 load configuration file named

loadfroms3 v3.yaml:

$ gpsscli submit loadfroms3 v3.yaml

Example 1oadfroms3 v3.yaml configuration file:

version: v3
targets:
- gpdb:
host: mdw-1
port: 15432

user: gpadmin

password: changeme
database: testdb

work schema: public

error limit: "25"

tables:

- table: orders

schema: public

mode:

merge:

match_columns:
order_columns:

delete_condition:

mapping:

data: data

pk: pk

seq: seq

sources:
- s3:

uri:

- "s3://s3-us-east-1.amazonaws

content:
csv:
columns:

- name:

type:

- name:

type:

- name:

type:

- name:

type:

delimiter:
s3params:

version: 1

pk
int
seq
int
data
text
flag
int

n.n
7

accessid: 123

secret: 456

chunksize: 4096

threadnum: 4
gpcheckcloud _newline:

autocompress:

encryption:
verifycert:

false
false

false

.com/mydir/mybucket/data0000"

322

Tanzu Greenplum Streaming Server

low_speed_limit: 1
option:
schedule: {}

See Also

gpsscli load, gpsscli submit

unload-file-v3.yaml

GPSS configuration file for unloading to file data (version 3).
Synopsis
version: v3

sources:
- gpdb:
host: <host>
port: <greenplum_ port>
user: <user_name>
password: <password>
database: <db_name>
work schema: <work schema name>
tables:
- table: <table name>
schema: <schema_ name>
filter: <input_filter_string>
mapping:
- <target_column_ name_ 1>: <source_ column_ name_ 1>

- <target column_name 2>: <source_column_ name_ 2>

queries:
- <queries>
task:
batch_size:
max_count: <max_count value>

interval ms: <interval value>

targets:
- file:
url: <file_path>
content:
<data_ format>
columns:

<column_spec>

option:
schedule:
max_retries: <num_retries>
retry_interval: <retry time>
running duration: <run_ time>

auto stop restart interval: <restart time>

323

Tanzu Greenplum Streaming Server

max_restart_times: <num_restarts>

quit at eof after: <clock time>
alert:

command: <command_to_ run>

workdir: <directory>

Where data format and column spec are one of the following blocks:

csv:
columns:
- name: <column_ name>

type: <column_data_type>

delimiter: <delim_char>
quote: <quote char>
newline: <newline str>
header: <header_value>
null: <null value>
escape: <escape_char>

force_quote: <boolean>

json:
column:
name: <column_name>
type: Jjson | Jsonb
is_jsonl: <boolean>

newline: <newline str>

Description

You specify the configuration properties for a VMware Tanzu Greenplum streaming server (GPSS) file load
job in a YAML-formatted configuration file that you provide to the gpsscli submit Or gpsscli load
commands. There are three types of configuration properties in this file - those that identify the source
VMware Tanzu Greenplum connection and origin table, properties specific to the target file you will unload
the data to, and job-related properties.

This reference page uses the name unload-file-v3.yaml to refer to this file; you may choose your own
name for the file.

The gpsscli utility processes the YAML configuration file keywords in order, using indentation (spaces) to
determine the document hierarchy and the relationships between the sections. The use of white space in
the file is significant. Keywords are not case-sensitive.

Keywords and Values
version Property
version: v3

The version of the configuration file. You must specify version: v3.

sources: gpdb Properties

host: host

324

Tanzu Greenplum Streaming Server

The host name or IP address of the Tanzu Greenplum coordinator host.

port: <greenplum port>

The port number of the Tanzu Greenplum server on the coordinator host.

user: <user_r1ame>
The name of the Tanzu Greenplum user/role. This user name must have permissions as described
in Configuring Tanzu Greenplum Role Privileges.

password: <password>
The password for the Tanzu Greenplum user/role.

database: <db name>
The name of the Tanzu Greenplum.

work schema: <work schema name>
The name of the Tanzu Greenplum schema in which GPSS creates internal tables. The default
work schema name iS public.

tables
The Tanzu Greenplum tables, and the data that GPSS will unload from each.

table: <table name>
The name of the Tanzu Greenplum table from where GPSS unloads the data.

schema: <schema name>
The name of the Tanzu Greenplum schema in which table name resides. Optional, the default
schema is the public schema.

filter: <output filter string>
The filter to apply to the input data before GPSS unloads the data from Tanzu Greenplum. If the filter
evaluates to true, GPSS unloads the data. If the filter evaluates to false, the data is not unloaded.
output filter string must be a valid SQL conditional expression and may reference one or more
column names.

mapping
Optional. Overrides the default external-to-database column mapping. It specifies the column to be
unloaded into the target file, and provides mapping between the internal writable external table
column name and the database column name expression. If you do not specify anything under
mapping, all columns are unloaded into the target file.

K

When you specify a mapping, ensure that you provide a mapping for all source data
elements of interest. GPSS does not automatically match column names when you
provide a mapping block.

<target column name X>: <source column name X>
target column name X specifies the column name of the writable external table that GPSS creates
internally. GPSS maps the Tanzu Greenplum column name expression specified in
source column name X, which is the column name in the source Tanzu Greenplum to unload data
from, to the writable external table column name.

queries
Optional. You may specify SQL queries to retrieve from the database, so the unloaded data is a
result of the union all of all the queries and the specified tables.

325

Tanzu Greenplum Streaming Server

ﬁ If you specify a system column name in the queries, you must specify as an ordinary
column name, otherwise it will error out. For example: select id, item, price,
gp_segment id as segment from test orders2 where id > 10000 specifies the
system column gp segment id as an ordinary column name.

task
The data source task properties.

batch size
Optional. Tune the batch size to unload into the files. When GPSS fetches data from Tanzu
Greenplum, the data is stored in the GPSS memory and flushed onto the files using the bath size
set by the parameters set by this option.

max count: <max count value>: Indicates the number of lines to fetch before flushing to disk.

interval ms: <interval value>

Represents the amount of time (in ms) since the last flush to the file.
targets: file Properties

url
A URL identifying the file where the data will be unloaded to. It must point to a location within the
same host where the Tanzu Greenplum streaming server is running. It cannot point to a remote
hostname or IP address. If you need to unload data from Tanzu Greenplum to a remote URL, start
Tanzu Greenplum streaming server on the remote host in order to unload the files from the database
into this host.

content
The file type, field names, and type-specific properties of the file data. You must specify all data
elements in the order in which they appear in the file.

data format : The format of the key or value data. You may specify a data format of csv or json.
column_spec : The Greenplum column mapping. The supported column specification differs for different

data formats, as described below.

For csv format:
When you specify the csv data format, GPSS writes the data to the list of columns that you specify.
The file content cannot contain line ending characters (CR and LF).

e columns: A set of column name/type mappings. The value [] specifies all columns.

* name: <column name>: The name of the column of the writable external table that GPSS creates
internally.

* header: <header name>: The name of the mapped column name in the output file.

e delimiter: <delim char>: Specifies a single ASCIl character that separates columns within each
message or row of data. The default delimiter is a comma (,).

e guote: <quote char>: Specifies the quotation character. Because GPSS does not provide a
default value for this property, you must specify a value.

326

Tanzu Greenplum Streaming Server

* newline: <newline str>: Specifies the string that represents a new line. GPSS does not specify
a default value.

* header: <header value>: Pending description.
e null: <null value>: Pending description.
e escape: <escape char>: Pending description.

e force quote: <boolean>: Pending description.

For JSON format:

When you specify the json data format, GPSS can read the data as a single JSON object or as a
single JSON record per line.

e columns: A single column name/type mapping.

e name: <column name>: The name of the column of the writable external table that GPSS
creates internally.

e key: <key name>: The name of the mapped column name in the output file.

e is jsonl: boolean: ldentifies whether or not GPSS writes the JSON data as a single
object or single-record-per-line. The default is false, GPSS writes the JSON data as a
single object.

e newline: newline str:A string that specifies the new line character(s) that end each
JSON record. The default newline is "\n".

option: Job-related Properties

schedule
Controls the frequency and interval of restarting jobs.

max_retries: <num retries>
The maximum number of times that GPSS attempts to retry a failed job. The default is 0, do not
retry. If you specify a negative value, GPSS retries the job indefinitely.

retry interval: <retry time>
The period of time that GPSS waits before retrying a failed job. You can specify the time interval in
day (d), hour (h), minute (m), second (s), or millisecond (ms) integer units; do not mix units. The
default retry interval is 5m (5 minutes).

running duration: <run time>
The amount of time after which GPSS automatically stops a job. GPSS does not automatically stop
a job by default.

auto stop restart interval: <restart time>
The amount of time after which GPSS restarts a job that it stopped due to reaching
running duration.

max restart times: <num restarts>
The maximum number of times that GPSS restarts a job that it stopped due to reaching
running duration. The default is 0, do not restart the job. If you specify the value -1, GPSS
restarts the job indefinitely. You may use gpsscli stop to stop the jobs from being restarted
indefinitely.

quit at eof after: <clock time>

327

Tanzu Greenplum Streaming Server

The clock time after which GPSS stops a job every day when it encounters an EOF. By default,
GPSS does not automatically stop a job that reaches EOF. GPSS never stops a job when the
current time is before clock time, even when GPSS encounters an EOF.

alert
Controls notification when a job is stopped for any reason (success, completion, error, user-initiated
stop).

command: <command to run>
The program that the GPSS server runs on the GPSS server host, including arguments. The
command must be executable by GPSS. command to run has access to job-related environment
variables that GPSS sets, including: $GPSSJOB NAME, $GPSSJOB STATUS, and $GPSSJOB DETAIL.
The shell script of the alert program that command to run specifes must contain #!/bin/bash in the
first line.

workdir: <directory>
The working directory for command to run. The default working directory is the directory from which
you started the GPSS server process. If you specify a relative path, it is relative to the directory
from which you started the GPSS server process.

timeout: <alert time>
The amount of time after a job stops, prompting GPSS to trigger the alert (and run command to_ run).
You can specify the time interval in day (d), hour (h), minute (m), or second (s) integer units; do not
mix units. The default alert timeout is -1s (no timeout).

Template Variables

GPSS supports using template variables to specify property values in the unload configuration file.

You specify a template variable value in the load configuration file as follows:

<property>: {{<template var>}}
For example:
max_retries: {{numretries}}
GPSS substitutes the template variable with a value that you specify via the -p | --property

<template var=value> option to the gpsscli dryrun, gpsscli submit, Of gpsscli load command.

For example, if the command line specifies:

--property numretries=10

GPSS substitutes occurrences of { {numretries}} in the load configuration file with the value 10 before
submitting the job, and uses that value while the job is running.

Notes

If you created a database object name using a double-quoted identifier (delimited identifier), you must
specify the delimited name within single quotes in the load configuration file. For example, if you create a
table as follows:

328

Tanzu Greenplum Streaming Server

CREATE TABLE "MyTable" (cl text);

Your YAML configuration file would refer to the table name as:

sourcess:
- gpdb:
tables:
- table: '"MyTable"'

You can specify backslash escape sequences in the CSV delimiter, quote, and escape options. GPSS
supports the standard backslash escape sequences for backspace, form feed, newline, carriage return, and
tab, as well as escape sequences that you specify in hexadecimal format (prefaced with \x). Refer to
Backslash Escape Sequences in the PostgreSQL documentation for more information.

Examples

The following sample configuration file gathers data from Tanzu Greenplum using two queries run against
the tables test orders3 and test orders4, and the specified columns from the table test orders, and
unloads them into two different targets, a csv file and a 4son file:

version: v3

sources:
- gpdb:
host: localhost
port: 6000

user: gpadmin
database: testdb
work_schema: public
tables:
- table: test_orders
schema: public
filter: id > 10000
mapping:
- id: id
- item: item
- price: price
- segment: gp_ segment id as segment
queries:
- select id, item, price, gp_segment id as segment from test orders3 where id
> 10000
- select id, item, price, gp_segment id as segment from test orders4 where id
> 10000
targets:
- file:
url: /home/gpadmin/path to unload/unloadl.csv
content:
csv:
columns:
- name: id
header: ID
- name: item
header: ITEM
- name: price
header: PRICE

- name: segment

329

https://www.postgresql.org/docs/9.4/sql-syntax-lexical.html#SQL-BACKSLASH-TABLE

Tanzu Greenplum Streaming Server

header: SEGMENT
delimiter: ","
quote: "'"
newline: LF
header: true
- file:
url: /home/gpadmin/path to unload/unloadl.json
content:
json:
columns:
- name: id
key: "ID"
- name: item
key: "ITEM"
- name: price
key: "PRICE"
- name: segment
key: "SEGMENT"
is_jsonl: true

new_line: "\n"

Example of a configuration file that uses batch size to tune the unload performace.

version: v3

sources:
- gpdb:
host: localhost
port: 6000

user: gpadmin
database: testdb
work_schema: public
tables:

- table: test_orders
schema: public
filter: id > 10000
mapping:

- id: id
- item: item
- price: price
- segment: gp segment id as segment
task:
batch_size:
max_count: 100000
interval ms: 1000
targets:
- file:
url: /home/gpadmin/path to unload/unloadl.csv
content:

csv:
columns:

- name: id
header: ID

- name: item
header: ITEM

- name: price
header: PRICE

- name: segment
header: SEGMENT

delimiter: ","

330

quote: "'"

newline: LF

header: true
- file:

url: /home/gpadmin/path to unload/unloadl.json

content:
json:
columns:
- name: id
key: "ID"
- name: item
key: "ITEM"
- name: price
key: "PRICE"
- name: segment
key: "SEGMENT"
is_jsonl: true

new line: "\n"

See Also

gpsscli load, gpsscli submit

Tanzu Greenplum Streaming Server

331

Tanzu Greenplum Streaming Server

Developing a VMware Tanzu Greenplum
Streaming Server Client

The Tanzu Greenplum streaming server (GPSS) is a gRPC server. gRPC provides a language- and
platform-neutral client/server communication framework. For more information about gRPC, refer to the
gRPC documentation.

GPSS exposes a Batch Data APl gRPC interface.

You can develop a GPSS gRPC client on your operating system of choice and with the IDE or build
environment of your choice. You can also develop the client using any programming language supported by
gRPC.

You will perform the following tasks when you develop a GPSS client:
1. Examine the GPSS Service Definition.
2. Set up your development environment.
3. Compile the GPSS service definition to generate the GPSS client classes.
4

Code your GPSS client application.

Developing to the GPSS Batch Data API

You will perform the following tasks when you develop a client to the GPSS Batch Data API:
1. Examine the GPSS Batch Data API Service Definition.

2. Set up your development environment. For an example Java development environment setup refer
to this procedure.

3. Compile the GPSS service definition to generate the GPSS client classes.

4. Code your GPSS client application. Each GPSS client will include code to perform the following
tasks:
o Connect to the GPSS Server

o Connect to VMware Tanzu Greenplum
o Retrieve Greenplum schema and table information
o Prepare a Greenplum table for writing

o Write data to the Greenplum table

GPSS Batch Data API Service Definition

332

https://grpc.io/docs/guides/index.html

Tanzu Greenplum Streaming Server

The Greenplum Streaming Server (GPSS) is a gRPC server. GPSS uses gRPC protocol buffers (protobuf)

to define the GPSS client interfaces and their message interchange format. With protocol buffers, the
structure of the data (messages) and the operations supported (services) are defined in a .proto file, an
ordinary text file. Refer to the Protocol Buffers Language Guide for detailed information about this data

serialization framework.

The GPSS Batch Data API .proto file defines the methods that clients can invoke to obtain metadata
information from, and write data to, VMware Tanzu Greenplum. For example, a GPSS client that you

develop can submit a request to list the tables that reside in a specific Greenplum schema, or to insert data

into a specific Greenplum table.

The GPSS Batch Data API service definition follows. Copy/paste the contents to a file named
gpss.proto, and note the file system location.

syntax = "proto3";

import "google/protobuf/empty.proto";
import "google/protobuf/struct.proto";
import "google/protobuf/timestamp.proto";

package api;
option java multiple files = true;

// Connect service Request message

message ConnectRequest {

string Host = 1; // Host address of Greenplum coordinator; must be accessible £

rom gpss server system

int32 Port = 2; // Greenplum coordinator port

string Username = 3; // User or role name that gpss uses to access Greenplum

string Password = 4; // User password

string DB = 5; // Database name

bool UseSSL = 6; // Use SSL or not; ignored, use the gpss config file to config
SSL

int32 SessionTimeout = 7; // Release the session after idle for specified numbe

r of seconds

}

// Connect service Response message
message Session {

string ID = 1; // Id of client connection to gpss

// Operation mode

enum Operation {

Insert = 0; // Insert all data into table; behavior of duplicate key or data depend

s upon the constraints of the target table.
Merge = 1; // Insert and Update
Update = 2; // Update the value of "UpdateColumns" if "MatchColumns" match
Read = 3; // Not supported

// Required parameters of the Insert operation
message InsertOption {

repeated string InsertColumns = 1; // Names of the target table columns the inser

t operation should update; used in 'INSERT INTO', useful for partial loading
bool TruncateTable = 2; // Truncate table before loading?

int64 ErrorLimitCount = 4; // Error limit count; used by external table

333

https://developers.google.com/protocol-buffers/docs/proto3

Tanzu Greenplum Streaming Server

int32 ErrorlLimitPercentage = 5; // Error limit percentage; used by external ta

ble

}

// Required parameters of the Update operation

message UpdateOption {

repeated string MatchColumns = 1; // Names of the target table columns to compar

e when determining to update or not

repeated string UpdateColumns = 2; // Names of the target table columns to update
if MatchColumns match

string Condition = 3; // Optional additional match condition; SQL sy
ntax and used after the 'WHERE' clause

int64 ErrorLimitCount = 4; // Error limit count; used by external table

int32 ErrorLimitPercentage = 5; // Error limit percentage; used by external ta
ble

}

// Required parameters of the Merge operation

// Merge operation creates a session-level temp table in StagingSchema

message MergeOption {

repeated string InsertColumns = 1;
repeated string MatchColumns = 2;
repeated string UpdateColumns = 3;
string Condition = 4;

int64 ErrorLimitCount = 5;

int32 ErrorLimitPercentage = 6;

// Open service Request message

message OpenRequest {

Session Session = 1; // Session ID returned by Connect

string SchemaName = 2; // Name of the VMware Greenplum schema

string TableName = 3; // Name of the VMware Greenplum table

string PreSQL = 4; // SQL to execute before gpss loads the data

string PostSQL = 5; // SQL to execute after gpss loads the data

int32 Timeout = 6; // Time to wait before aborting the operation (seconds); n

ot supported

string Encoding = 7; // Encoding of text data; not supported

string StagingSchema = 8; // Schema in which gpss creates external and temp tables;

default is to create these tables in the same schema as the target table

FormatAvro avro = 9;
FormatBinary binary = 10;
FormatCSV csv = 11;
FormatDelimited delimited = 12;
FormatJSON json = 13;
FormatCustom custom = 14;
string proto = 15;

}

oneof Option { // Identify the type of write operation to perform
InsertOption InsertOption = 100;
UpdateOption UpdateOption = 101;
MergeOption MergeOption = 102;

message DBValue {

oneof DBType {

334

Tanzu Greenplum Streaming Server

int32 Int32Value
int64 Int64Value
float Float32Value = 5;
double Float64Value = 6;

string StringValue = 7; // Includes types whose values are presented as string bu

I
NP

t are not a real string type in Greenplum; for example: macaddr, time with time zone,
box, etc.
bytes BytesValue = 8;
google.protobuf.Timestamp TimeStampValue = 10; // Time without timezone
google.protobuf.NullValue NullValue = 11;
string OtherValue = 12;

message Row {

repeated DBValue Columns = 1;

message RowData {

bytes Data = 1; // A single protobuf-encoded Row

// Write service Request message
message WriteRequest {
Session Session = 1;
repeated RowData Rows = 2; // The data to load into the target table

// Close service Response message

message TransferStats { // Status of the data load operation
int64 SuccessCount = 1; // Number of rows successfully loaded
int64 ErrorCount = 2; // Number of error lines if Errorlimit is not reached
repeated string ErrorRows = 3; // Number of rows with incorrectly-formatted data; no

t supported

// Close service Request message

message CloseRequest {
Session session = 1;
int32 MaxErrorRows = 2 // -1: returns all, 0: nothing, >0: max rows

bool Abort = 3;

// ListSchema service request message
message ListSchemaRequest {

Session Session = 1;

message Schema {
string Name = 1;

string Owner = 2;

// ListSchema service response message
message Schemas {

repeated Schema Schemas = 1;

// ListTable service request message

335

Tanzu Greenplum Streaming Server

message ListTableRequest {
Session Session = 1;

string Schema = 2; // 'public' is the default if no Schema is provided

// DescribeTable service request message
message DescribeTableRequest {

Session Session = 1;

string SchemaName = 2;

string TableName = 3;

enum RelationType {

Table = 0;
View = 1;
Index = 2;
Sequence = 3;

Special = 4;
Other = 255;

message TableInfo {
string Name = 1;
RelationType Type = 2;

// ListTable service response message
message Tables {
repeated TableInfo Tables = 1;

// DescribeTable service response message
message Columns {

repeated ColumnInfo Columns = 1;

message ColumnInfo {

string Name = 1; // Column name

string DatabaseType = 2; // Greenplum data type

bool HasLength = 3; // Contains length information?

int64 Length = 4; // Length if HasLength is true

bool HasPrecisionScale = 5; // Contains precision or scale information?
int64 Precision = 6;

int64 Scale = 7;
bool HasNullable = 8; // Contains Nullable constraint?

bool Nullable = 9;

service Gpss {
// Establish a connection to VMware Greenplum; returns a Session object

rpc Connect (ConnectRequest) returns (Session) {}

// Disconnect, freeing all resources allocated for a session

rpc Disconnect (Session) returns (google.protobuf.Empty) {}

// Prepare and open a table for write

Tanzu Greenplum Streaming Se

rpc Open (OpenRequest) returns (google.protobuf.Empty) {}

// Write data to table
rpc Write (WriteRequest) returns(google.protobuf.Empty) {}

// Close a write operation

rpc Close (CloseRequest) returns (TransferStats) {}

// List all available schemas in a database

rpc ListSchema (ListSchemaRequest) returns (Schemas) {}

// List all tables and views in a schema
rpc ListTable(ListTableRequest) returns (Tables) {}

// Decribe table metadata (column name and column type)

rpc DescribeTable (DescribeTableRequest) returns (Columns) {}

// The format of the source data.
// If there is an intermediate column inside Format,
// then the source data will be transformed to the intermediate column.
// If there is no source column name in Format,
// then the column name will be the Target table column name,
// and the source column data type will be matched with Target column type.
message SourceDataFormat {
oneof unit {
FormatAvro avro = 1;
FormatBinary binary = 2;
FormatCSV csv = 3;
FormatDelimited delimited = 4;
FormatJSON json = 5;
FormatCustom custom = 6;

string protobuf = 7;

message FormatAvro {

string source_ column _name = 1; // The source column name
string schema _url = 2; // If specified, gpss requests the avro schema from url
bool bytes to base64 = 3; // When true and schema url is specified, gpss converts

bytes field in avro message to base64-encoded string

bool ignore deserialize error = 4; // When true, gpss ignores avro deserialize err
ors, and puts data into log error

string schema path on gpdb = 5; // Used for standalone avro schema; if exists, gpss
retrieves the avro schema from the path on every node in the greenplum cluster

string schema_ca on_gpdb = 6; // The path to the specified CA certificate file for g
pss verifying the peer; the CA file must exist at that path on every greenplum segment

string schema cert on gpdb = 7; // The path to the specified client certificate file
for gpss connecting to HTTPS schema registry; required if the registry's client authen
tication is enabled

string schema_key on gpdb = 8; // The path to the specified private key file for gps
s connecting to HTTPS schema registry; required if the registry's client authenticatio
n is enabled

string schema min tls version = 9; // The minimum transport layer security (TLS) ver
sion that gpss requests on the registry connection; the default value is 1.0, and gpss
supports minimum TLS versions of 1.0, 1.1, 1.2, and 1.3

}

message FormatBinary {

rver

337

Tanzu Greenplum Streaming Server

string source_column_name = 1; // The source column name

message FormatCSV {

repeated IntermediateColumn columns = 1; // Source column, move to format.Column cl:

bin, c2:json
string delimiter = 2;
string quote = 3;
string null = 4;

string escape = 5;
string force not null = 6;
string newline = 7;

bool fill missing fields = 8;
bool header = 9;

message FormatDelimited {
repeated IntermediateColumn columns = 1; // The source column names

string delimiter = 2;

message FormatJSON {
IntermediateColumn column = 1; // The source column name

message FormatCustom {

repeated IntermediateColumn columns = 1;
string name = 2;
repeated string options = 3;

// IntermediateColumn is an intermediate result after parsing SourceDataFormat,
// IntermediateColumn looks like a virtual table column. It

// will be used to filter or convert types.

// The Source Data 1s parsed to a table column style data.

// source column: name and type, the type must be valid.

// ex: convert a string "123" to 123 integer.

// Caution: the FormatJSON is not a decomposed format, json is treated as an integral

type.
message IntermediateColumn {
string name = 1;

string type = 2; // VMware Greenplum basic data types are supported

Data Type Mapping

The GPSS Data API service definition includes messages that represent rows and columns of supported

Tanzu Greenplum data types.

Because Tanzu Greenplum supports more data types than protobuf, the GPSS Data API provides a

mapping between the types as follows:

gRPC Type Greenplum Type
Int32Value integer, serial
Int64Value bigint, bigserial

338

Tanzu Greenplum Streaming Server

gRPC Type Greenplum Type

Float32Value real

Float64Value double

StringValue text (any kind of data)

BytesValue bytea

TimeStampValue time, timestamp (without time zone)

In the simplest case, all Greenplum data types can be mapped to a string.

Setting up a Java Development Environment

Prerequisites

Before setting up your GPSS client development environment, ensure that you have:
e Access to a system on which you can develop code.

¢ Administrative access to your development system.

Example Procedure for Java
Perform the following procedure to set up a GPSS client Java development environment. This procedure
assumes a Linux-based development system.

1. If not already present on your development system, install Java Development Kit version 1.8. You
must have superuser permissions to install operating system packages. For example, to install the
JDK on a CentOS development system:

root@devsys$ yum install java-1.8.0-openjdk-1.8.0%*

2. If it is not already installed on your development system, download the protocol buffer compiler
version 3, and follow the installation instructions in the README.

3. Create a work directory. For example:

user@devsys$ mkdir gpss_dev
user@devsys$ cd gpss_dev
user@devsys$ export GPSSDEV_DIR=pwd’

Examples in this guide reference your work directory. You may consider adding $GpsspEv DIR to
your .bash profile or equivalent shell initialization script.

4. Download the gRPC Java code generation plugin and example code by cloning its repository. For
example:

user@devsys$ git clone https://github.com/grpc/grpc-java.git

The command clones the repository to a directory named grpc-java in the current directory.

339

https://developers.google.com/protocol-buffers/docs/downloads

Tanzu Greenplum Streaming Server

5. Prepare the work directory for Java development. Create directories for the source code and the
gpss.proto service definition file. For example:

user@devsys$ mkdir -p client/src/main/java

user@devsys$ mkdir client/src/main/proto

6. Navigate to the proto directory and copy the gpss.proto service definition file to this directory.
Refer to GPSS Batch Data API Service Definition if you have not already created the file. For
example:

user@devsys$ cd client/src/main/proto
user@devsys$ cp <dir>/gpss.proto .

7. Navigate back to your work directory:

user@devsys$ cd SGPSSDEV_DIR

Generating the Batch Data API Client Classes

The GPSS Batch Data API service definition defines messages and services exposed by the GPSS gRPC
server. This definition resides in the gpss.proto file. You must run the protocol buffer compiler (protoc) on
the gpss.proto file to generate the classes that the GPSS client uses to query metadata information from,
and write data to, VMware Tanzu Greenplum.

In some build environments such as gradle, you can configure the build to automatically generate the
GPSS client classes for you. Refer to the grpc examples for your programming language for sample build
configurations with automatic code generation. For example, the gradie build and settings files for the
examples in the grpc-java repository are configured to automatically generate the Java classes for you.

You may choose to run the protocol buffer compiler manually. If you choose to run the command manually,
be sure to specify the gRPC codegen plugin for the programming language in which you are developing the
GPSS client. For example, you may run a command similar to the following to generate the gRPC GPSS
Java client code:

$ protoc --plugin=protoc-gen-grpc-java=../grpc-java/compiler/build/exe/java_plugin/pro
toc-gen-grpc-java \

--proto_path=./src/main/proto --grpc-java out=./gen/grpc/ \

--java_out=./gen/java/ gpss.proto

Coding the GPSS Batch Data Client

You will develop GPSS client code to perform the following tasks:
1. Connect to the GPSS Server
2. Connect to VMware Tanzu Greenplum
3. Retrieve Greenplum schema and table information
4. Prepare a Greenplum table for writing
5

Write data to the Greenplum table

340

Tanzu Greenplum Streaming Server

ﬁ The code excerpts in this topic are written in the Java programming language.

The code excerpts build upon each other. For example, the client instantiates a session object in the
Connect to VMware Tanzu Greenplum section. Subsequent code excerpts reference the same session
object instance.

Connecting to the GPSS Server

Before a GPSS client can load data into VMware Tanzu Greenplum, the client must first establish a
connection to the VMware Tanzu Greenplum streaming server.

When you start a GPSS server instance, you provide a JSON-format configuration file. You identify the
hostname and port on which the GPSS server instance listens for connection requests in this configuration
file. For more information about the GPSS server, refer to the gpss reference page.

The GPSS client application must create a gRPC managed channel to this GPSS instance. Because
GPSS supports the simple RPC service, the client creates a blocking stub on the channel.

This sample Java client code connects to and disconnects from a GPSS service instance listening for
connections on port number 5019 on the local host:

java.util.concurrent.TimeUnit;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;

String gpssHost = "localhost";

Integer gpssPort = 5019;

ManagedChannel channel = null;
GpssGrpc.GpssBlockingStub bStub = null;

try {
// connect to GPSS gRPC service instance; create a channel and a blocking stub
channel = ManagedChannelBuilder.forAddress (gpssHost, gpssPort)
.usePlaintext (true)
.build () ;
bStub = GpssGrpc.newBlockingStub (channel);

// (placeholder) do stuff here

// shutdown the channel

channel.shutdown () .awaitTermination (7, TimeUnit.SECONDS) ;

} catch (Exception e) {

After the GPSS client instantiates a stub, the client can use the stub to invoke the GPSS service methods.

Connecting to VMware Greenplum

The client uses the GPSS connect service to connect to a specific VMware Tanzu Greenplum database.
The pisconnect service closes the connection to Greenplum.

341

Tanzu Greenplum Streaming Server

The connect and Disconnect service definitions follow:

rpc Connect (ConnectRequest) returns (Session) {}
rpc Disconnect (Session) returns (google.protobuf.Empty) {}

The client specifies the information required to connect to Tanzu Greenplum in a ConnectRequest
message. The connect service retumns a session message. The session identifies the client's connection
to the GPSS server. The client must provide the session when it invokes metadata- and table-related
services on Tanzu Greenplum. The client must also provide the session when it disconnects from Tanzu
Greenplum.

The ConnectRequest and session message definitions:

message ConnectRequest {
string Host = 1;
int32 Port = 2;
string Username = 3;

string Password = 4;

string DB = 5;
bool UseSSL = 6;
int32 SessionTimeout=7;

message Session {
string ID = 1;

The following sample includes Java client code to:
e Create and populate a connectRequest protocol buffer object.
¢ Use the blocking stub to call the connect service.
¢ Save the session response object.

¢ Disconnect the session.

Session mSession = null;

String gpCoordHost = "localhost";
Integer gpCoordPort = 15432;
String gpRoleName = "gpadmin";
String gpPasswd = "changeme";
String dbname = "testdb";

// create a connect request builder
ConnectRequest connReg = ConnectRequest.newBuilder ()
.setHost (gpCoordHost)
.setPort (gpCoordPort)
.setUsername (gpRoleName)
.setPassword (gpPasswd)
.setDB (dbname)
.setUseSSL (false)
.setSessionTimeout (1000)
Lbuild() s

// use the blocking stub to call the Connect service

mSession = bStub.connect (connReq) ;

342

Tanzu Greenplum Streaming Server

// (placeholder) do greenplum stuff here

// use the blocking stub to call the Disconnect service

bStub.disconnect (mSession) ;

After the GPSS client connects to Tanzu Greenplum, the client can invoke service requests to retrieve
information about schemas and tables, and write to Greenplum tables.

Retrieving Greenplum Schema and Table Info

Your GPSS client may need to examine VMware Tanzu Greenplum schemas or the definition of a
Greenplum table. The GPSS Data API defines three services to obtain metadata information about
Greenplum schemas and tables:

e ListSchema - list all schemas defined in the database
e IListTable - list all tables in a schema

e DescribeTable - return the definition of each column in a table

Listing the Schemas in the Database

The GPSS Data API defines the Listschema service and supporting messages to list the schemas defined
in a Tanzu Greenplum database:

rpc ListSchema (ListSchemaRequest) returns (Schemas) {}

message ListSchemaRequest {

Session Session = 1;

message Schemas {

repeated Schema Schemas i g

message Schema {
string Name = 1;

string Owner = 2;

ListSchema returns the list of schemas defined in the database identified by the session specified by the
client. This service returns the name of the schema and the Tanzu Greenplum role that owns the schema.

This sample Java client code collects the names of the schemas in the database identified by the specified
session:

import java.util.ArrayList;

import java.util.List;

// create a list schema request builder
ListSchemaRequest 1lsReq = ListSchemaRequest.newBuilder ()
.setSession (mSession)

.build () ;

343

Tanzu Greenplum Streaming Server

// use the blocking stub to call the ListSchema service
List<Schema> listSchema = bStub.listSchema(lsReq) .getSchemasList () ;

// extract the name of each schema and save in an array
ArrayList<String> schemaNamelist = new ArrayList<String>();

for (Schema s : listSchema) {

schemaNameList.add (s.getName()) ;

Listing the Tables in a Schema

The GPSS Data API defines the L.istTable service and supporting messages to list the tables defined in a
specific Tanzu Greenplum schema:

rpc ListTable (ListTableRequest) returns (Tables) {}
message ListTableRequest {

Session Session = 1;

string Schema = 2;

enum RelationType {

Table = 0;
View = 1;
Index = 2;
Sequence = 3;

Special = 4;
Other = 255;

message TableInfo {
string Name = 1;

RelationType Type = 2;

message Tables {
repeated TableInfo Tables = 1;

ListTable retumns a list of the tables in the schema and the database (session) specified by the client.
This service also returns the type of Tanzu Greenplum table/relation.

This sample Java code collects a list of the names of all of the tables defined in the specified schema and
database:

// use the first schema name returned in the ListSchema code excerpt

String schemaName = schemaNamelList.get (0);

// create a list table request builder
ListTableRequest 1ltReqg = ListTableRequest.newBuilder ()
.setSession(mSession)
.setSchema (schemaName)
.build () ;

// use the blocking stub to call the ListTable service
List<TableInfo> tblList = bStub.listTable (ltReq) .getTablesList ()

344

Tanzu Greenplum Streaming Server

// extract the name of each table only and save in an array
ArrayList<String> tblNamelList = new ArrayList<String>();
for (TableInfo ti : tblList) {
if (ti.getTypeValue() == RelationType.Table VALUE) ({
tblNamelist.add (ti.getName()) ;

Acquiring the Column Definitions of a Table

The GPSS Data API defines the pescribeTable service and supporting messages to retrieve the column
definitions of a Tanzu Greenplum table:

rpc DescribeTable (DescribeTableRequest) returns (Columns) {}

message DescribeTableRequest {
Session Session = 1;
string SchemaName = 2;

string TableName = 3;

message Columns {

repeated ColumnInfo Columns = 1;

message ColumnInfo {
string Name = 1;
string DatabaseType = 2;
bool HasLength = 3;
int64 Length = 4;
bool HasPrecisionScale = 5;
int64 Precision = 6;
int64 Scale = 7;
bool HasNullable = 8;
bool Nullable = 9;

DescribeTable returns a list of column definitions for the table in the schema and the database (session)
specified by the client. The column definition includes the name and the type of the Tanzu Greenplum
column. The definition also includes length, precision, and scale information, if applicable.

Sample Java code to retrieve the column definitions of the table in the specified schema and database, and
print the column name and type to stdout:

// the name of the first table returned in the ListTable code excerpt
String tableName = tblNamelList.get (0);

// create a describe table request builder
DescribeTableRequest dtReqg = DescribeTableRequest.newBuilder ()
.setSession (mSession)
.setSchemaName (schemaName)
.setTableName (tableName)
.build () ;

// use the blocking stub to call the DescribeTable service

345

Tanzu Greenplum Streaming Server

List<ColumnInfo> columnlist = bStub.describeTable (dtReq) .getColumnsList () ;

// print the name and type of each column
for (ColumnInfo ci : columnList) {
String colname = ci.getName () ;
String dbtype = ci.getDatabaseType()
// display the column name and type to stdout
System.out.println("column " + colname + " type: " + dbtype);

Specifying and Preparing a Greenplum Table for Writing

The client uses the GPSS open service to specify and prepare a VMware Tanzu Greenplum table for
writing. The close service closes, or ends, a write operation on the table.

The open service definition follows:

rpc Open (OpenRequest) returns(google.protobuf.Empty) {}

The GPSS client can insert or merge data into or update the data in a Tanzu Greenplum table. The client
specifies the mode of the write operation via a mode-specific option that it provides to the openrequest
message. Supported write operation modes include:

e Insert - add data to the table, optionally truncating before writing
¢ Update - update table data, specifying the join column and an optional update condition
* Merge - insert table data, specifying the join column and an optional insert condition

Relevant messages for the open service include:

message InsertOption ({
repeated string InsertColumns = 1;
bool TruncateTable = 2;

int64 ErrorLimitCount = 4;

int32 ErrorLimitPercentage = 5;

message UpdateOption {
repeated string MatchColumns = 1;

repeated string UpdateColumns = 2;

string Condition = 3;
int64 ErrorLimitCount = 4;
int32 ErrorLimitPercentage = 5;

message MergeOption {
repeated string InsertColumns = 1;
repeated string MatchColumns = 2;
repeated string UpdateColumns = 3;

string Condition = 4;
int64 ErrorLimitCount = 5;
int32 ErrorlLimitPercentage = 6;

message OpenRequest {

Session Session = 1;

346

Tanzu Greenplum Streaming Server

string SchemaName = 2;
string TableName = 3;

string PreSQL = 4;

string PostSQL = 5;

int32 Timeout = 6; //seconds
string Encoding = 7;

string StagingSchema = 8;

oneof Option {
InsertOption InsertOption = 100;
UpdateOption UpdateOption = 101;
MergeOption MergeOption = 102;

After it completes loading data or encounters an error from GPSS or the source, the GPSS client invokes
the close service on the table. close retumns the success and error row counts and any error strings in the

TransferStats message.

The close service definition and relevant messages follow:

rpc Close (CloseRequest) returns (TransferStats) {}

message CloseRequest {
Session session = 1;
int32 MaxErrorRows = 2;
bool Abort = 3;

message TransferStats {
int64 SuccessCount = 1;
int64 ErrorCount = 2;

repeated string ErrorRows = 3;

Use MaxErrorRows to identify the form and amount of error information that GPSS returns:

MaxErrorRows Value Description

-1 Returns an Errorcount and all ErrorRows (error messages).
0 Returns only an ErrorCount; N0 ErrorRows. The default.
n>0 Returns an Errorcount and a maximum of N ErrorRows.

If the GPSS client encounters an unrecoverable error that affects the load operation to Tanzu Greenplum, it
may choose to cancel writing the current batch of data. When the closerRequest message is instantiated
with .setabort (true), GPSS cancels and rolls back the pending write transaction. This rolls back all
writes since the open.

Sample Code
Suppose you create a Tanzu Greenplum table with the following command:

CREATE TABLE public.loaninfo(loantitle text, riskscore int, d2iratio text);

347

Tanzu Greenplum Streaming Server

Sample Java code to prepare to open the 1ocaninfo table for insert, and then close the table follows:

Integer errLimit = 25;

Integer errPct = 25;

// create an insert option builder

InsertOption iOpt = InsertOption.newBuilder ()
.setErrorLimitCount (errLimit)
.setErrorLimitPercentage (errPct)
.setTruncateTable (false)
.addInsertColumns ("loantitle")
.addInsertColumns ("riskscore")
.addInsertColumns ("d2iratio")

.build () ;

// create an open request builder

OpenRequest oReqg = OpenRequest.newBuilder ()
.setSession (mSession)
.setSchemaName (schemaName)
.setTableName (tableName)
//.setPreSQL (""
//.setPostSQL ("")
//.setEncoding ("")
.setTimeout (5)
//.setStagingSchema ("")
.setInsertOption (iOpt)

.build () ;

// use the blocking stub to call the Open service; it returns nothing

bStub.open (oReq) ;
// (placeholder) write data here

// create a close request builder

TransferStats tStats = null;

CloseRequest cReg = CloseRequest.newBuilder ()
.setSession (mSession)
//.setMaxErrorRows (15)

//.setAbort (true)
.build () ;

// use the blocking stub to call the Close service
tStats = bStub.close(cReq);

// display the result to stdout
System.out.println("CloseRequest tStats: " + tStats.toString());

Writing Data to a Greenplum Table

After opening a VMware Tanzu Greenplum table with a specific open mode, a GPSS client can write one or
more rows of data to the table. The client must map the source data to a gRPC data type. The GPSS
server maps the gRPC type to a Tanzu Greenplum type as specified in Data Type Mapping.

The wirite service definition and relevant messages follow:

rpc Write (WriteRequest) returns (google.protobuf.Empty) {}

message DBValue {

348

Tanzu Greenplum Streaming Server

oneof DBType {
int32 Int32Value =1
int64 Int64Value = 2;
float Float32Value = 5;
double Float64Value = 6;
string StringValue = 7;
bytes BytesValue = 8;
google.protobuf.Timestamp TimeStampValue = 10;
google.protobuf.NullValue NullValue = 11;

message Row {

repeated DBValue Columns = 1;

message RowData {
bytes Data = 1;

message WriteRequest {
Session Session = 1;
repeated RowData Rows = 2;

The GPSS client application must provide values for all columns declared in the Greenplum table definition.
If there is no data to write for a specific column, you must explicitly specify a nu11 value for the column

when generating the row's RowData.

Sample Java code to write two rows of data to the 1oaninfo table that you opened in insert mode in the
previous section follows:

// create an array of rows
ArrayList<RowData> rows = new ArrayList<>();
for (int row = 0; row < 2; rowt+) {
// create a row builder
api.Row.Builder builder = api.Row.newBuilder () :;

// create builders for each column, in order, and set values - text, int, text
api.DBValue.Builder colbuilderl = api.DBValue.newBuilder() ;
colbuilderl.setStringValue ("xxx") ;

builder.addColumns (colbuilderl.build()) ;

api.DBValue.Builder colbuilder2 = api.DBValue.newBuilder():;
colbuilder2.setInt32Value(77);

builder.addColumns (colbuilder2.build()) ;

api.DBValue.Builder colbuilder3 = api.DBValue.newBuilder():;
colbuilder3.setStringValue ("yyy");

builder.addColumns (colbuilder3.build()) ;

// build the row
RowData.Builder rowbuilder = RowData.newBuilder().setData(builder.build().toByteStri

ng());

// add the row
rows.add (rowbuilder.build()) ;

// create a write request builder

349

Tanzu Greenplum Streaming Server

WriteRequest wReq = WriteRequest.newBuilder ()
.setSession(mSession)
.addAllRows (rows)
.build () ;

// use the blocking stub to call the Write service; it returns nothing

bStub.write (wReq) ;
If GPSS encounters an error, it rolls back the pending write transaction; rolling back all writes since the
Open.

The client determines the success or failure of the write operation from the Transferstats returned when

the client invokes the close service to close the table.

350

	Contents
	VMware Tanzu Greenplum Streaming Server 1.x Documentation
	VMware Tanzu Greenplum Streaming Server 1.x Release Notes
	Supported Platforms
	Release 1.11
	Release 1.11.4
	Resolved Issues

	Release 1.11.3
	Changed Features
	Resolved Issues

	Release 1.11.2
	Resolved Issues

	Release 1.11.1
	Resolved Issues

	Release 1.11.0
	New and Changed Features
	Resolved Issues

	Release 1.10
	Release 1.10.4
	Changed Features
	Resolved Issues

	Release 1.10.3
	Changed Features
	Resolved Issues

	Release 1.10.2
	Resolved Issues

	Release 1.10.1
	Changed Features
	Resolved Issues

	Release 1.10.0
	New and Changed Features

	Release 1.9
	New and Changed Features
	Resolved Issues

	Release 1.8
	Release 1.8.1
	Changed Features
	Resolved Issues

	Release 1.8.0
	New and Changed Features
	GPSS Configuration
	General
	Kafka Data Source
	File Data Source
	New RabbitMQ Data Source (Beta)

	Resolved Issues

	Release 1.7
	Release 1.7.2
	Changed Features
	Resolved Issues

	Release 1.7.1
	Resolved Issues

	Release 1.7.0
	New and Changed Features
	OS and Platforms
	GPSS Configuration
	Authentication
	Kafka Data Source
	File and Kafka Data Sources
	version 3 (Beta) Configuration
	New S3 Data Source (Beta)
	New Commands and Options
	Other Changes

	Resolved Issues

	Release 1.6
	Release 1.6.0
	New and Changed Features
	Beta Features
	Resolved Issues

	Release 1.5
	Release 1.5.3
	Resolved Issues

	Release 1.5.2
	Changed Features
	Resolved Issues

	Release 1.5.1
	Changed Features
	Resolved Issues

	Release 1.5.0
	New and Changed Features
	Resolved Issues

	Release 1.4
	Release 1.4.3
	Changes
	Resolved Issues

	Release 1.4.2
	Changes
	Resolved Issues

	Release 1.4.1
	Changes
	Resolved Issues

	Release 1.4.0
	New and Changed Features
	Resolved Issues

	Deprecated Features
	Removed Features

	Release 1.3
	Release 1.3.1
	Resolved Issues

	Release 1.3.0
	New and Changed Features
	Resolved Issues

	Beta Features
	Deprecated Features
	Known Issues and Limitations

	Overview of the VMware Tanzu Greenplum Streaming Server
	Architecture

	Installing the VMware Tanzu Greenplum Streaming Server
	About the Download Packages
	Downloading a GPSS Installer
	Prerequisites
	Installing the GPSS gppkg
	Installing the GPSS Tarball
	Installing the GPSS ETL Package
	Inspecting the Quickstart Guide

	Upgrading the VMware Tanzu Greenplum Streaming Server
	Step1: GPSS Pre-Upgrade Actions
	Step2: Upgrading GPSS

	Configuring and Managing the VMware Tanzu Greenplum Streaming Server
	Prerequisites
	Registering the GPSS Extension
	Configuring the Tanzu Greenplum Streaming Server
	Running the Tanzu Greenplum Streaming Server
	About GPSS Logging
	Managing GPSS Log Files
	Configuring Per-Run Server Log Files
	Rotating the GPSS Server Log File
	Configuring Automatic Server Log File Rotation
	Rotating the Server Log File On-Demand

	Integrating with logrotate

	Monitoring GPSS Service Instances
	About GPSS Job Management
	Shadowing the VMware Tanzu Greenplum Password
	Pulling Information from the Debug Server

	Configuring VMware Tanzu Greenplum Streaming Server for Encryption and Authentication
	Configuring gpss and gpkafka for TLS-Encrypted Communications with Kafka
	Configuring gpss for TLS-Encrypted Communications with RabbitMQ
	Configuring gpss and gpkafka for SSL-Encrypted Communications with Greenplum
	Configuring SSL for the Data Channel
	Configuring SSL for the Control Channel

	Configuring gpss and gpsscli for Encrypted gRPC Communications
	Configuring gpss and gpkafka for Kerberos Authentication to Greenplum
	Configuring gpss for Kerberos Authentication to Kafka
	Configuring gpss for LDAP Authentication to Kafka

	Configuring the Streaming Server for Client-to-Server Authentication
	Enabling Prometheus Metrics Collection
	Prerequisites
	Enabling Prometheus Integration with GPSS
	Viewing GPSS Metrics

	About Loading Data with VMware Tanzu Greenplum Streaming Server
	Constructing the Load Configuration File
	Creating the Target Greenplum Table
	Configuring VMware Tanzu Greenplum Role Privileges
	Running the Client
	Using the gpsscli Client Utility
	About the gpsscli Return Codes
	About GPSS Job Identification
	About External Table Naming and Lifecycle
	Submitting a Job
	Starting a Job
	Checking Job Status, Progress, History
	Waiting for a Job to Complete
	Stopping a Job
	Removing a Job
	Running a Single-Command Load
	About GPSS Job Initiation and Scheduling
	About Registering for Job Stopped Notification
	About Retrying a Failed Job
	About Job Scheduling

	Checking for Load Errors
	Examining GPSS Log Files
	Determining Batch Load Status
	Diagnosing an Error with a Trial Load
	Reading the Error Log
	Auto-Restarting a Failed Job
	Redirecting Data to a Backup Table when GPSS Encounters Expression Evaluation Errors
	Preventing External Table Reuse

	Understanding Custom Formatters
	Developing a Custom Formatter for GPSS
	About Data Boundaries
	Handling Bad Data
	Known Issues
	Building the Custom Formatter Shared Library with PGXS
	Registering the Custom Formatter Function with Tanzu Greenplum

	Using a Custom Formatter in GPSS

	Understanding Transformer Plugins
	Developing a Transformer Plugin for GPSS
	Using a Transformer Plugin in GPSS

	Understanding UDF Transformers
	Developing a UDF Transformer for GPSS
	Using a UDF Transformer in GPSS
	Example

	Loading Kafka Data into Greenplum
	Requirements
	Load Procedure
	Prerequisites
	About Supported Kafka Message Data Formats
	Avro
	Binary
	CSV
	Custom
	Delimited Text
	JSON (single object)
	JSON (single record per line)
	About Multiple-Line Kafka Messages

	Registering a Custom Formatter
	Constructing the gpkafka.yaml Configuration File
	Tanzu Greenplum Options (Version 2-Focused)
	KAFKA:INPUT Options
	KAFKA:OUTPUT Options
	Loading to Multiple Tanzu Greenplum Tables
	About the Merge Load Mode
	Other Options
	About KEYs, VALUEs, and FORMATs
	About the JSON Format and Column Type
	About Transforming and Mapping Kafka Input Data
	About Mapping Avro Bytes Fields to Base64-Encoded Strings

	Creating the Greenplum Table
	Running the gpkafka load Command
	Configuring the gpfdist Server Instance
	About Kafka Offsets, Message Retention, and Loading

	Checking the Progress of a Load Operation

	Understanding Kafka Message Offset Management
	Legacy Consumer
	High-Level Consumer
	Summary

	Accessing an SSL-Secured Schema Registry
	About the Configuration Properties
	Additional Considerations

	Examples
	Loading CSV Data from Kafka
	Prerequisites
	Procedure

	Loading JSON Data from Kafka (Simple)
	Prerequisites
	Procedure

	Loading JSON Data from Kafka (with Mapping)
	Prerequisites
	Procedure

	Loading Avro Data from Kafka
	Prerequisites
	Procedure

	Loading JSON Data from Kafka Using gpsscli
	Prerequisites
	Procedure

	Merging Data from Kafka into Greenplum Using gpsscli
	Prerequisites
	Procedure

	Custom Formatter for Kafka
	Procedure

	Best Practices
	Choosing a Commit Threshold

	Loading File Data into Greenplum
	Load Procedure
	Prerequisites
	About Supported Data Formats
	Constructing the filesource.yaml Configuration File
	Tanzu Greenplum Options (Version 2-Focused)
	Input Options
	FILE:OUTPUT Options
	About the Merge Load Mode
	About the JSON Format and Column Type
	About META, VALUEs, and FORMATs
	About Transforming and Mapping Input Data

	Creating the Greenplum Table

	Loading from S3 into Greenplum (Beta)
	Load Procedure
	Prerequisites
	About Supported File Formats
	Constructing the s3source.yaml Configuration File
	Creating the Greenplum Table

	Loading RabbitMQ Data into Greenplum
	Load Procedure
	Prerequisites
	About Supported Message Data Formats
	Binary
	CSV
	Custom
	Delimited Text
	JSON (single object)
	JSON (single record per line)

	Registering a Custom Formatter
	Constructing the rabbitmq.yaml Configuration File
	Tanzu Greenplum Options (Version 2-Focused)
	RABBITMQ:INPUT Options
	RABBITMQ:OUTPUT Options
	Loading to Multiple Tanzu Greenplum Tables
	About the Merge Load Mode
	Other Options
	About the JSON Format and Column Type
	About Transforming and Mapping RabbitMQ Input Data

	Creating the Greenplum Table
	About RabbitMQ Stream Offsets, Message Retention, and Loading

	Understanding RabbitMQ Message Offset Management
	RabbitMQ Properties
	GPSS Properties
	Summary

	Unloading Data from Greenplum
	Unloading File Data from VMware Tanzu Greenplum
	Unload Procedure
	Prerequisites
	About Supported Data Formats
	Start the Tanzu Greenplum Streaming Server
	Prepare the Data to Unload
	Construct the unload configuration file
	Use the gpsscli Client Command to Unload the Data

	Other Considerations

	Utility Reference
	gpss
	Synopsis
	Description
	Options
	Examples
	See Also

	gpss.json
	Synopsis
	Description
	Keywords and Values
	Notes
	Examples
	See Also

	gpsscli
	Synopsis
	Description
	Options
	See Also

	gpsscli convert
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli dryrun
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli list
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli load
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli progress
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli remove
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli shadow
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli start
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli status
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli stop
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli submit
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli wait
	Synopsis
	Description
	Options
	Examples
	See Also

	gpsscli.yaml
	title: gpsscli.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Examples
	See Also

	gpsscli-v3.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	gpkafka
	Synopsis
	Description
	Options
	See Also

	gpkafka load
	Synopsis
	Description
	Options
	Examples
	See Also

	gpkafka-v3.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Kafka Properties
	Examples
	See Also

	gpkafka-v2.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	gpkafka.yaml
	Synopsis
	Description
	Keywords and Values
	Notes
	Examples
	See Also

	filesource-v3.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	filesource-v2.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	rabbitmq-v3.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	rabbitmq-v2.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	s3source-v3.yaml (Beta)
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	unload-file-v3.yaml
	Synopsis
	Description
	Keywords and Values
	Template Variables
	Notes
	Examples
	See Also

	Developing a VMware Tanzu Greenplum Streaming Server Client
	Developing to the GPSS Batch Data API
	GPSS Batch Data API Service Definition
	Data Type Mapping

	Setting up a Java Development Environment
	Prerequisites
	Example Procedure for Java

	Generating the Batch Data API Client Classes
	Coding the GPSS Batch Data Client
	Connecting to the GPSS Server
	Connecting to VMware Greenplum
	Retrieving Greenplum Schema and Table Info
	Listing the Schemas in the Database
	Listing the Tables in a Schema
	Acquiring the Column Definitions of a Table

	Specifying and Preparing a Greenplum Table for Writing
	Sample Code

	Writing Data to a Greenplum Table

