
Tanzu Spring

Tanzu Spring Commercial

You can find the most up-to-date technical documentation on the VMware by Broadcom website at:

https://techdocs.broadcom.com/

VMware by Broadcom
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

Copyright © 2025 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its
subsidiaries. For more information, go to https://www.broadcom.com. All trademarks, trade names, service marks,
and logos referenced herein belong to their respective companies.

Tanzu Spring

2

Contents

12

12

12

12

12

12

13

13

13

13

13

14

14

14

14

15

15

15

15

15

16

16

16

17

18

18

18

19

19

20

20

21

22

22

22

23

24

24

24

25

26

VMware Tanzu Spring .

Extended support .

Spring Enterprise Subscription artifact repository .

Spring Application Advisor .

Enterprise Spring Boot Extensions .

Spring Cloud Enterprise Components .

For Tanzu Platform for Cloud Foundry (formerly called Tanzu Application Service) . .

For Kubernetes .

VMware Tanzu tc Server .

VMware Distribution of OpenJDK .

Reference Information .

Apache HTTP Server built by VMware .

Releases .

Downloading 2.4.63-20250218195700 .

Downloading 2.4.62-20240904201630 .

Downloading 2.4.62-20240828181951 .

Downloading 2.4.62-20240717172113 .

Downloading 2.4.61-20240710201530 .

Downloading 2.4.61-20240703145951 .

About Apache HTTP Server .

RELEASE-NOTES-2-4-61-20240703200552 .

Package Description .

Downloading .

Included Components .

RHEL 7 Users .

RHEL 8 Users .

RHEL 9 Users .

Ubuntu 20.04 and 22.04 Users .

Microsoft Windows Users .

Installation .

Instance Creation .

RELEASE-NOTES-2-4-61-20240710201530 .

Package Description .

Downloading .

Included Components .

RHEL 7 Users .

RHEL 8 Users .

RHEL 9 Users .

Ubuntu 20.04 and 22.04 Users .

Microsoft Windows Users .

Installation .

Tanzu Spring

3

26

27

27

28

28

29

29

30

30

30

31

31

33

33

33

34

35

35

35

36

36

37

37

38

39

39

39

41

41

41

41

42

43

43

44

44

45

45

46

47

47

47

47

48

49

Instance Creation .

RELEASE-NOTES-2-4-62-20240717172113 .

Package Description .

Downloading .

Included Components .

RHEL 7 Users .

RHEL 8 Users .

RHEL 9 Users .

Ubuntu 20.04 and 22.04 Users .

Microsoft Windows Users .

Installation .

Instance Creation .

RELEASE-NOTES-2-4-62-20240828181951 .

Package Description .

Downloading .

Included Components .

RHEL 7 Users .

RHEL 8 Users .

RHEL 9 Users .

Ubuntu 20.04 and 22.04 Users .

Microsoft Windows Users .

Installation .

Instance Creation .

RELEASE-NOTES-2-4-62-20240904201630 .

Package Description .

Downloading .

Included Components .

RHEL 7 Users .

RHEL 8 Users .

RHEL 9 Users .

Ubuntu 20.04 and 22.04 Users .

Microsoft Windows Users .

Installation .

Instance Creation .

RELEASE-NOTES 2.4.63-20250218195700 .

Package Description .

Downloading .

Included Components .

RHEL 7 Users .

RHEL 8 Users .

RHEL 9 Users .

Ubuntu 20.04 and 22.04 Users .

Microsoft Windows Users .

Installation .

Instance Creation .

Tanzu Spring

4

51

52

52

52

53

53

53

54

54

54

55

55

55

55

55

55

55

56

56

56

57

57

57

63

69

69

70

71

71

71

72

72

72

73

73

73

74

74

75

75

75

Spring Application Advisor .

Release Notes .

1.1.2 .

1.1.1 .

1.1.0 .

1.0.4 .

1.0.3 .

1.0.2 .

1.0.1 .

1.0.0 .

0.0.9 .

0.0.8 .

0.0.7 .

0.0.6 .

What is Spring Application Advisor? .

How is Spring Application Advisor Different From Other Solutions?

Spring Boot Migrator .

OpenRewrite .

How Spring Application Advisor Works .

The native CLI .

The Server .

Spring Application Advisor How-to Guides .

Upgrade Spring Boot from 2.7 to 3.4 .

Upgrade an Spring application that uses a custom Spring Boot

Starter .

Spring Application Advisor Architecture .

How Spring Application Advisor fits into your software delivery lifecycle

(SDLC) .

Architecture diagram .

Installing Spring Application Advisor .

Download and Start the Spring Application Advisor Server

Running Spring Application Advisor CLI .

Download the CLI .

Configure the Maven settings to download the commercial recipes

Produce a build configuration .

Publish a build configuration .

Generate an upgrade plan .

Apply an upgrade plan from your local machine .

Increasing memory limit .

Enable continuous and incremental upgrades .

Integrating Spring Application Advisor with CI/CD

Integrating with Spring Application Advisor in GitLab Enterprise .

Step 1: Create a Custom GitLab Runner using GKE .

Tanzu Spring

5

76

78

78

78

79

79

79

80

81

81

83

83

83

84

85

86

87

87

87

88

88

88

88

89

89

89

89

89

90

90

90

90

90

91

92

92

92

93

93

96

97

Step 2: Invoke the Advisor CLI from the Custom GitLab Runner

Step 3: Check that your GitLab pipelines run Spring Application Advisor at the

end .

Integrating with Spring Application Advisor in GitHub Enterprise .

Integrating with Spring Application Advisor in Jenkins

Using Pipeline Templates .

Integrating with Other SaaS CI/CD Tools .

Set up for script execution .

GitHub Actions .

Custom upgrades using Spring Application Advisor

Configure the upgrade plan for shared libraries .

Update the server configuration .

Providing upgrade mappings stored in the file system .

Providing upgrade mappings located in a Git repository .

Providing upgrade mappings located in JFrog Artifactory .

Providing upgrade mappings using HTTP .

Running commercial recipes using OpenRewrite tools

Upgrade to Spring Boot 3.0.x .

Upgrade to Spring Boot 3.1.x .

Upgrade to Spring Boot 3.2.x .

Upgrade to Spring Boot 3.3.x .

Upgrade to Spring Boot 3.4.x .

Upgrade to Spring Security 5.8.x .

Upgrade to Spring Security 6.0.x .

Upgrade to Spring Security 6.1.x .

Upgrade to Spring Security 6.2.x .

Upgrade to Spring Security 6.3.x .

Upgrade to Spring Data 3.0.x .

Upgrade to Spring Framework 6.0.x .

Upgrade to Spring Framework 6.1.x .

Upgrade to Spring Framework 6.2.x .

Migrate from JAXRS to Spring Boot 3.3 .

Design Principles .

Spring Boot 3.0.x Recipes .

Spring Boot 3.1.x Recipes .

Spring Boot 3.2.x Recipes .

Spring Boot 3.3.x Recipes .

Spring Boot 3.4.x Recipes .

Spring Data 3.0.x Recipes .

Spring Framework 6.0.x Recipes .

Spring Framework 6.1.x Recipes .

Spring Framework 6.2.x Recipes .

Tanzu Spring

6

98

99

99

99

100

101

101

102

102

103

104

104

104

104

105

105

105

105

105

106

106

106

106

106

106

107

107

107

108

108

108

108

109

109

109

110

110

110

110

110

111

111

111

Spring Security 5.8.x Recipes .

Portfolio Analysis with the Tanzu Platform UI

Connect the server to the Tanzu Platform UI .

Using Tanzu Platform UI SaaS .

Using Tanzu Platform UI Self-Managed .

Troubleshooting Spring Application Advisor .

Why does the apply command report that there are no upgrade plans if

there are outdated Spring dependencies? .

Why is my project unable to resolve the new Spring Maven Plugin?

Why is Spring Application Advisor unable to resolve the bom.json file?

Why am I seeing the “Blocked mirror for repositories” error

when applying the upgrade plan? .

Why can’t I see my repository in the Tanzu Platform?

Spring Application Advisor CLI Reference .

advisor build-config get .

Usage .

Supported options .

Examples .

advisor build-config publish .

Usage .

Supported options .

Examples .

advisor upgrade-plan get .

Usage .

Supported options .

Examples .

advisor upgrade-plan apply .

Usage .

Supported options .

Examples .

advisor mapping build (Experimental) .

Usage .

Supported options .

Examples .

advisor .

Usage .

Supported options .

Enterprise Spring Boot Governance Starter .

Spring Boot Governance Starter Release Notes

v1.3.0 .

v1.2.0 .

v1.1.0 .

v1.0.0 .

Overview .

Minimum Requirements .

Tanzu Spring

7

111

112

112

112

112

113

113

113

113

113

114

115

115

116

116

117

117

118

119

119

119

120

120

121

121

122

122

123

123

124

124

125

125

126

126

126

127

127

128

128

129

129

129

130

130

130

Predefined Validations .

Server TLS Validation .

Client TLS Validation .

OIDC Clients .

Getting Started .

Prerequisites .

Configure the Dependency .

Gradle .

Maven .

Run the Application .

Enable TLS with a PKCS12 keystore (non-compliant)

Enable TLS with a BCFKS certificate (compliant) .

The Governance Actuator Endpoint .

Filter by tag .

Exposing the Endpoint .

Viewing the Governance Actuator Endpoint .

Library Configuration Options .

Governance Specifications .

Preconfigured Governance Specifications .

TNZSPEC-0001 .

TNZSPEC-0002 .

TNZSPEC-0003 .

TNZSPEC-0004 .

TNZSPEC-0005 .

TNZSPEC-0006 .

TNZSPEC-0007 .

TNZSPEC-0008 .

TNZSPEC-0009 .

TNZSPEC-0010 .

TNZSPEC-0011 .

TNZSPEC-0012 .

TNZSPEC-0013 .

TNZSPEC-0014 .

TNZSPEC-0015 .

TNZSPEC-0016 .

TNZSPEC-0017 .

TNZSPEC-0018 .

TNZSPEC-0019 .

TNZSPEC-0020 .

TNZSPEC-0100 .

TNZSPEC-0101 .

TNZSPEC-0102 .

TNZSPEC-0103 .

TNZSPEC-0104 .

TNZSPEC-0105 .

TNZSPEC-0106 .

Tanzu Spring

8

131

131

132

132

132

133

135

135

135

135

136

136

137

137

137

137

137

137

138

138

140

140

140

141

142

146

146

146

146

146

147

148

149

149

150

152

153

153

153

153

154

TNZSPEC-0107 .

Custom Standards Support and Validation .

Define a GovernanceSpecProvider bean to add custom specs

​Create a custom class to store application details .

Define a GovernanceDetailsScanner bean .

Create a GovernanceValidator bean to run your validation rules

Validation State .

Run the application .

Troubleshooting .

Problems running your app as a fat jar .

Cause .

Solution .

Tanzu Local Authorization Server .

Local Authorization Server Release Notes .

v1.0.1 .

v1.0.0 .

v0.0.7 .

0.0.6 .

Getting Started with Local Authorization Server

Role-based or attribute-based access control using OpenID claim

TLS support .

Using Local Authorization Server in your Tests

Using in tests with Testcontainers .

Using Local Authorization Server in tests with Spring Boot Testjars

Reference Configuration .

Tanzu Spring Config Server .

Tanzu Spring Config Server - standalone JAR

Config Server Release Notes .

v1.0.0 .

Installing Spring Config Server .

Enabling Mutual TLS (mTLS) .

Running the Config Server .

Configuring the Config Server .

Configuring Git Backends .

Configuring Vault Backends .

Configuring Composite Backends .

Enabling Client Applications .

Adding the Client Dependency to your Build .

For Gradle builds .

For Maven builds .

Specifying Connection Details .

Tanzu Spring

9

154

155

155

155

155

155

156

156

156

156

156

158

158

159

159

160

160

160

160

161

162

162

162

162

163

163

164

164

164

164

165

166

167

168

168

168

169

169

170

171

Enabling TLS (mTLS) Authentication .

Tanzu Spring Config Server - capability .

Overview .

Capacity requirements .

Release Notes .

v1.2.0 .

v1.1.0 .

v1.0.0 .

Installing Spring Config Server .

Create Config Server Resources .

Detect available parameters .

Create a ConfigServer using the Tanzu CLI .

Create a ConfigServer using a YAML file .

Configure Workloads to use Config Server Resources

Prepare .

Bind the workload to the ConfigServer .

Create App Config Resources .

Detect available parameters .

Create an AppConfig using the Tanzu CLI .

Create an AppConfig using a YAML file .

Configure Workloads to use App Config Resources

Prepare .

Bind the workload to the AppConfig .

Read configuration .

Troubleshooting .

ConfigServer is not becoming ready .

Tanzu Spring Service Registry .

Tanzu Service Registry Release Notes .

v1.0.0 .

Installing Tanzu Service Registry .

Configuring Tanzu Service Registry .

Enabling Mutual TLS (mTLS) .

Running the Service Registry .

Enabling Client Applications .

Adding the Client Dependency to your Build .

For Gradle builds .

For Maven builds .

Specifying Connection Details .

Enabling TLS (mTLS) Authentication .

VMware Tanzu Distribution of OpenJDK .

Tanzu Spring

10

171

171

171

174

174

174

174

175

176

176

177

177

177

177

177

178

178

178

178

178

179

180

181

VMware Tanzu OpenJDK .

Installation .

Support Lifecycle .

Spring Enterprise Subscription .

Spring Enterprise Subscription for Artifact Repository

Administrators .

Prerequisites .

Additional Prerequisites for Air-Gapped Environments .

Accessing Spring Enterprise Subscription Artifact Repositories

Spring Enterprise Subscription repository details .

Adding a Remote Repository in Artifactory .

Configuring Release Artifacts .

Maven versus Gradle .

Artifactory Smart Repository .

Advanced Settings .

Downstream Repository Replications .

Reference Documentation .

Spring Enterprise Subscription for Application Developers

Prerequisites .

Using Spring Enterprise Artifacts .

Option 1: Create a shared Maven profile for all Maven and Gradle projects

Option 2: Configure a single Maven repository .

Option 3: Configure a single Gradle repository .

Option 4: Create a remote Maven repository for the Spring Enterprise Subscription

artifact repository .

Tanzu Spring

11

VMware Tanzu Spring

VMware Tanzu Spring is an enterprise support subscription that includes multiple benefits in addition to the
value that the Spring open source projects and ecosystem provide. The following sections cover these high
level benefits and point to where you can learn more about each.

Extended support

With Tanzu Spring, you can get premium support for the following open source software:

Spring

Apache Tomcat

Apache HTTP Server

OpenJDK™

Spring Enterprise Subscription artifact repository

For Spring Boot minor versions that have entered Enterprise support and are no longer under OSS support,
patch releases are made available through a Spring Enterprise Subscription, our VMware Spring artifact
repository. The Spring Boot support page shows the current state of minor versions and their support
status.

Spring Application Advisor

Spring Application Advisor is a set of tools for continuously and incrementally upgrading Spring application
dependencies, source code, and configuration across all your Git repositories. The Spring Application
Advisor CLI can be integrated into Continuous Integration pipelines to generate source code updates and
merge requests for specific upgrade steps.

Enterprise Spring Boot Extensions

The Enterprise Spring Boot Governance Starter extension generates compliance standard and governance
audit information on the /actuator/governance endpoint for your application. You may also extend
Governance Starter to create your own governance and compliance policy validations inside your
applications. Governance Starter is available for inclusion in your application dependencies via the Spring
Enterprise Subscription artifact repository.

Spring Cloud Enterprise Components

Tanzu Spring

12

https://spring.io/projects/spring-boot#support

Customers can use enterprise-ready implementations of Spring Cloud application infrastructure based on
popular Spring projects with capabilities such as integrated access control, day-2 operations, and platform-
native integrations. These Spring Cloud enterprise components are targeted for VMware Tanzu Platform for
Cloud Foundry (formerly called Tanzu Application Service) and Kubernetes environments.

For Tanzu Platform for Cloud Foundry (formerly called Tanzu
Application Service)

Tanzu Platform for Cloud Foundry is a modern runtime for microservices built on Cloud Foundry. The
following list includes Spring Cloud tiles that can be installed and made available as services to your
applications. These Spring Cloud tiles go beyond default OSS project libraries and provide dynamic service
binding, automated security patterns, and platform integrations for Tanzu Platform for Cloud Foundry.

Spring Cloud Services

Spring Cloud Gateway for VMware Tanzu

Spring Cloud Data Flow for VMware Tanzu

For Kubernetes

The following Spring Enterprise offerings are available as part of Tanzu Spring and can be deployed on any
Kubernetes environment based on their respective prerequisite version support. The use of these Spring
Enterprise offerings is enhanced when used as part of Tanzu Platform for Kubernetes that provides secure
build and deployment of your Spring applications through a pre-paved path to production.

Spring Cloud Gateway for Kubernetes

Spring Cloud Data Flow for Kubernetes

API portal for VMware Tanzu

VMware Tanzu tc Server

VMware Tanzu tc Server provides tooling to manage the lifecycle of a Java servlet container with enterprise
expertise built in, along with a repeatable and scalable configuration approach with templates.

VMware Tanzu tc Server documentation

VMware Distribution of OpenJDK

VMware provides a binary distribution of OpenJDK that is supported as part of Tanzu Spring.

VMware Distribution of OpenJDK documentation

Reference Information

Tanzu Spring overview page

Tanzu Spring support page on spring.io

Tanzu Spring Framework overview page

Tanzu Spring

13

https://www.vmware.com/products/app-platform/tanzu
https://www.cloudfoundry.org/
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/spring-cloud-services-for-cloud-foundry/3-2/scs-tanzu/index.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/spring-cloud-gateway-for-cloud-foundry/2-3/spring-cloud-gateway/index.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/spring-cloud-data-flow-for-cloud-foundry/1-14/scdf-tanzu/index.html
https://tanzu.vmware.com/application-platform
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/spring-cloud-gateway-for-kubernetes/2-2/scg-k8s/index.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/spring-cloud-data-flow-for-kubernetes/1-6/scdf-k8s/index.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/api-portal-for-tanzu/1-5/api-portal-tanzu/index.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/tanzu-tc-server/11-0/tc-server/topics-about-tc-server.html
https://www.vmware.com/products/app-platform/tanzu-spring
https://spring.io/support
https://tanzu.vmware.com/spring-app-framework

Apache HTTP Server built by VMware

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP server for
modern operating systems including UNIX and Windows. The goal of this project is to provide a secure,
efficient, and extensible server that provides HTTP services in sync with the current HTTP standards.

Releases

Apache HTTP Server built by VMware 2.4.63-20250218195700

Apache HTTP Server built by VMware 2.4.62-20240904201630

Apache HTTP Server built by VMware 2.4.62-20240828181951

Apache HTTP Server built by VMware 2.4.62-20240717172113

Apache HTTP Server built by VMware 2.4.61-20240710201530

Apache HTTP Server built by VMware 2.4.61-20240703200552

Downloading 2.4.63-20250218195700

This release updates the OpenSSL version to 3.3.2.

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. This topic includes
instructions for obtaining an access token, which is required for download.

httpd-ubuntu-2.4.63-20250218195700.tar.bz2

httpd-windows-x64-2.4.63-20250218195700.zip

httpd-rhel-2.4.63-20250218195700.tar.bz2

httpd-sources-2.4.63-20250218195700.zip

release-notes-2.4.63-20250218195700.md

Downloading 2.4.62-20240904201630

This release updates the OpenSSL version to 3.3.2.

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. This topic includes
instructions for obtaining an access token, which is required for download.

httpd-ubuntu-2.4.62-20240904201630.tar.bz2

httpd-windows-x64-2.4.62-20240904201630.zip

httpd-rhel-2.4.62-20240904201630.tar.bz2

httpd-sources-2.4.62-20240904201630.zip

Tanzu Spring

14

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.63-20250218195700/httpd-ubuntu-2.4.63-20250218195700.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.63-20250218195700/httpd-windows-x64-2.4.63-20250218195700.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.63-20250218195700/httpd-rhel-2.4.63-20250218195700.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources-ubuntu/2.4.63-20250218195700/httpd-sources-ubuntu-2.4.63-20250218195700.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.63-20250218195700/release-notes-2.4.63-20250218195700.md
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.62-20240904201630/httpd-ubuntu-2.4.62-20240904201630.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.62-20240904201630/httpd-windows-x64-2.4.62-20240904201630.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.62-20240904201630/httpd-rhel-2.4.62-20240904201630.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources-ubuntu/2.4.62-20240904201630/httpd-sources-ubuntu-2.4.62-20240904201630.zip

release-notes-2.4.62-20240904201630.md

Downloading 2.4.62-20240828181951

This release updates the APR version to 1.7.5, which addresses CVE-2023-49582

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. This topic includes
instructions for obtaining an access token, which is required for download.

httpd-ubuntu-2.4.62-20240828181951.tar.bz2

httpd-windows-x64-2.4.62-20240828181951.zip

httpd-rhel-2.4.62-20240828181951.tar.bz2

httpd-sources-2.4.62-20240828181951.zip

release-notes-2.4.62-20240828181951.md

Downloading 2.4.62-20240717172113

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. This topic includes
instructions for obtaining an access token, which is required for download.

httpd-ubuntu-2.4.62-20240717172113.tar.bz2

httpd-windows-x64-2.4.62-20240717172113.zip

httpd-rhel-2.4.62-20240717172113.tar.bz2

httpd-sources-2.4.62-20240717172113.zip

release-notes-2.4.62-20240717172113.md

Downloading 2.4.61-20240710201530

This release is for rhel7, it is built from identical sources as 2.4.61-20240703145951

httpd-rhel-2.4.61-20240710201530.tar.bz2 (RHEL 7+)

Downloading 2.4.61-20240703145951

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. This topic includes
instructions for obtaining an access token, which is required for download.

httpd-ubuntu-2.4.61-20240703200552.tar.bz2

httpd-windows-x64-2.4.61-20240703200552.zip

httpd-rhel-2.4.61-20240703200552.tar.bz2 (For RHEL 8+, use 2.4.61-20240710201530 for RHEL 7)

httpd-sources-2.4.61-20240703200552.zip

release-notes-2.4.61-20240703200552.md

About Apache HTTP Server

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP server for
modern operating systems including UNIX and Windows. The goal of this project is to provide a secure,

Tanzu Spring

15

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.62-20240904201630/release-notes-2.4.62-20240904201630.md
https://www.cve.org/CVERecord?id=CVE-2023-49582
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.62-20240828181951/httpd-ubuntu-2.4.62-20240828181951.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.62-20240828181951/httpd-windows-x64-2.4.62-20240828181951.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.62-20240828181951/httpd-rhel-2.4.62-20240828181951.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources-ubuntu/2.4.62-20240828181951/httpd-sources-ubuntu-2.4.62-20240828181951.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.62-20240828181951/release-notes-2.4.62-20240828181951.md
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.62-20240717172113/httpd-ubuntu-2.4.62-20240717172113.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.62-20240717172113/httpd-windows-x64-2.4.62-20240717172113.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.62-20240717172113/httpd-rhel-2.4.62-20240717172113.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources/2.4.62-20240717172113/httpd-sources-2.4.62-20240717172113.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.62-20240717172113/release-notes-2.4.62-20240717172113.md
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.61-20240710201530/httpd-rhel-2.4.61-20240710201530.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.61-20240703200552/httpd-ubuntu-2.4.61-20240703200552.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.61-20240703200552/httpd-windows-x64-2.4.61-20240703200552.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.61-20240703200552/httpd-rhel-2.4.61-20240703200552.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources/2.4.61-20240703200552/httpd-sources-2.4.61-20240703200552.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.61-20240703200552/release-notes-2.4.61-20240703200552.md

efficient, and extensible server that provides HTTP services in sync with the current HTTP standards.

RELEASE-NOTES-2-4-61-20240703200552

Updated: July 03, 2024

Build Date: July 03, 2024

What’s in the Release Notes

Package Description

Included Components

RHEL 7 Users

RHEL 8 Users

RHEL 9 Users

Ubuntu Users

Microsoft Windows Users

Installation

Instance Creation

Updating Instances

Package Description

This package includes Apache HTTP Server (httpd), along with a number of frequently updated library
components (dependencies).

This package is structured to allow parallel installation of multiple releases of Apache HTTP Server and
related components. It contains one directory tree, labeled as 2.4.55-230207 which represents the current
version of httpd and of all components bundled in the package as of the effective date. In this case, all of
the components reflect current releases as of the releases build date.

Unlike many httpd distributions, the end user instance configuration, server content, and logs are not
modified in this directory tree. See the section about Instance Creation for details of creating a server
instance with these user maintained files.

In order to build httpd from scratch, see additional details at VMware’s github oss-httpd-build project. A
tarball of the unix sources and zipfile of the windows sources is provided alongside the binary release
downloads, for ready reference.

Versions prior to 2.4.53 used the OpenSSL and PCRE-8.x legacy versions. As of httpd 2.4.53, OpenSSL
release 3.0 and PCRE2 release 10.x are used instead. If modules were also compiled to consume
OpenSSL or PCRE2 themselves, they must be rebuilt.

Downloading

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. An access token is
required to download.

Tanzu Spring

16

httpd-ubuntu-2.4.61-20240703200552.tar.bz2

httpd-windows-x64-2.4.61-20240703200552.zip

httpd-rhel-2.4.61-20240703200552.tar.bz2

httpd-sources-2.4.61-20240703041113.zip

release-notes-2.4.61-20240703200552.md

Included Components

The following components are included in this httpd-2.4.55-230207 build; those marked (*) are not compiled
on RHEL 7 and Ubuntu 18.04, but the OS Vendors’ distribution packages are used instead. Links to the
user change notes and vulnerability indexes are illustrated below. Packages updated since the previous
release httpd-2.4.54-220722 are identified in boldface. In cases where the project does not maintain a
reference to specific CVE’s in an easily web accessible format, the
https://www.cvedetails.com/vulnerability-list/ database link is provided; this list is not endorsed as complete
or comprehensive and is offered for convenience only.

Apache HTTPS Server 2.4.61

http://www.apache.org/dist/httpd/CHANGES_2.4

http://httpd.apache.org/security/vulnerabilities_24.html

Apache APR library 1.7.4
http://www.apache.org/dist/apr/CHANGES-APR-1.7

Apache APR-iconvlibrary 1.2.2

http://www.apache.org/dist/apr/CHANGES-APR-ICONV-1.2

Apache APR-utillibrary 1.6.3

http://www.apache.org/dist/apr/CHANGES-APR-UTIL-1.6

brotli compression library 1.0.9
https://github.com/google/brotli/releases

Curl 8.8.0

https://curl.haxx.se/changes.html https://curl.haxx.se/docs/security.html

expat 2.6.2

https://github.com/libexpat/libexpat/blob/master/expat/Changes

Jansson 2.14
https://jansson.readthedocs.io/en/stable/changes.html

libxml 2.13.1

https://www.cvedetails.com/vulnerability-list/vendor_id-1962/product_id-3311/Xmlsoft-
Libxml2.html

http://www.xmlsoft.org/news.html (out of date)

Lua language 5.4.7

https://www.cvedetails.com/vulnerability-list/vendor_id-13641/product_id-28436/LUA-
LUA.html

Tanzu Spring

17

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.61-20240703200552/httpd-ubuntu-2.4.61-20240703200552.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.61-20240703200552/httpd-windows-x64-2.4.61-20240703200552.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.61-20240703200552/httpd-rhel-2.4.61-20240703200552.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources/2.4.61-20240703200552/httpd-sources-2.4.61-20240703200552.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.61-20240703200552/release-notes-2.4.61-20240703200552.md

https://www.lua.org/bugs.html

nghttp2 library 1.62.1

https://github.com/nghttp2/nghttp2/releases

OpenSSL library openssl-3.3.1
https://www.openssl.org/news/vulnerabilities.html

https://www.openssl.org/news/changelog.html

PCRE2 library 10.44

https://www.cvedetails.com/vulnerability-list/vendor_id-3265/product_id-33513/Pcre-
cre2.html

https://www.pcre.org/changelog.txt

Zlib compression librar 1.3.1

https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html

https://zlib.net/ChangeLog.txt

RHEL 7 Users

The RHEL 7 package requires several commonly installed packages to be available. These can be
provisioned with the following command:

$ yum install expat jansson libuuid libxml2 lua pcre2 zlib

Note the addition of the jansson package to this list since the 2.4.29-171109 release, and the change to
pcre2 since the 2.4.51-211007 release. To use the provided apxs utility, additional packages are required as
indicated at the https://github.com/vmware-tanzu/ oss-httpd-build README page.

RHEL 8 Users

The RHEL 7 package is compatible with RHEL 8 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

RHEL 9 Users

The RHEL 7 package is compatible with RHEL 9 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib libxcrypt-compat

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages

Tanzu Spring

18

are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

Ubuntu 20.04 and 22.04 Users

The Ubuntu package requires several commonly installed packages to be available, these may be
provisioned with the following command:

$ apt-get -y install libexpat1 libjansson4 liblua5.3-0 libpcre2-8-0 libxml2 zlib1g bzi

p2

Note the addition of the libjansson4 package and corrected liblua5.3-0 and libxml2 package names to this
list since the 2.4.29-171109 release, and the change to libpcre2-8-0 since the 2.4.51-211007 release. To use
the provided apxs utility, additional packages are required as indicated at the https://github.com/vmware-
tanzu/oss-httpd-build README page.

Microsoft Windows Users

This package is built using Visual C++ 19 and C Runtime version 14, components of Microsoft Visual
Studio 2022. Windows Server 2022 and Windows Server 2019 are both suitable for deployment. Windows
10 Desktop and Windows 11 Desktop are suitable for developer evaluation, but are not suitable for server
deployment, as Microsoft restricts the Windows Desktop license, limiting aspects of the operating system
behavior, including the Windows Sockets API, and tunes the process scheduler to deliver a better desktop
experience. Users must obtain and install the “Microsoft Visual C++ Redistributable for Visual Studio 2022”,
x64 edition from https://visualstudio.microsoft.com/downloads/ (currently this is listed under Other Tools
and Frameworks, and provides support for Visual Studio 2015, 2017 and 2019 as well.) Install the x64
flavor, and observe the prerequisites noted for that package. Installing this package from Microsoft ensures
that this runtime is updated by the Windows Update service for security vulnerabilities within the Universal
C Runtime itself.

Note that VMware convenience packages prior to httpd 2.4.53 were built with Visual Studio 2017 or 2019.
This may cause issues for users who have compiled third-party modules. Users are advised to rebuild any
such modules before combining them with these newer packages. This package relies upon Windows
PowerShell to execute the httpd control scripts on Windows computers. All supported Windows versions
have PowerShell installed by default, but specific installations of Windows may not. To check whether your
version of Windows has PowerShell installed, go to Start > All Programs > Accessories and check for
Windows PowerShell in the list.

If Windows PowerShell is not already installed, install it, as directed, at https://docs.microsoft.com/en-
us/powershell/scripting/setup/setup-reference.

If necessary, enable Windows PowerShell for script processing; script processing may be disabled by
default:

1. Start PowerShell from the Start Menu as an Administrator by opening Start > All Programs

Users can still build this package from source for the Ubuntu 16.04 operating system, see
https://github.com/vmware-tanzu/oss-httpd-build#readme, however, that OS is no longer
supported.

Tanzu Spring

19

Accessories > Windows PowerShell, then right-clicking on Windows PowerShell and selecting Run as
Administrator. A PowerShell window starts.

1. Check the current PowerShell setting by executing the following command: PS prompt> Get-
ExecutionPolicy.

2. If the command returns Restricted, it means that PowerShell is not yet enabled. Enable it to allow
local script processing at a minimum by executing the following command: PS prompt> Set-
ExecutionPolicy RemoteSigned

3. You can choose a different execution policy for your organization, and enable PowerShell using
Group and User policies. Typically, only the Administrator will be using the server control scripts, so
the RemoteSigned execution policy should be adequate in most cases.

Windows users must take note that extracting the zip file contents using the File Explorer from a remote
drive or volume, or from an untrusted “blocked” file will result in untrusted and non-executable files and
scripts. For the windows binary package, copy the .zip file to a local drive before using the File Explorer
extraction tool. If the .zip file was downloaded, then using the Windows File Explorer examine the .zip file
properties, and under Security below the Attributes item, check the Unblock check box to mark the zip file
contents as trusted. If the Security item is not present, the file is already unblocked.

In the command-line example given below, unzip is provided by info-zip, while mklink is an intrinsic
cmd.exe command which is not provided by PowerShell.

Installation

Create the desired install path, such as /opt/vmware/webserver or C:\VMware\WebServer, and unpack the
tar.bz2 or .zip file into that directory. From this root directory, then invoke the fixrootpath script to correct the
embedded paths to the current path, and finally create a symlink ‘httpd-2.4’ in parallel to the installed httpd
product path, once ready to adopt this installation as the “accepted” httpd-2.4 installation. During an
upgrade, restart each server instance individually and verify the correct operation of that instance’s hosts. If
there is a problem resulting from an upgrade, simply restore the symlink to the previously installed httpd
path, and restart the servers with the old version to avoid unnecessary interruption. When correct operation
is verified the older httpd version can be expunged.

Unix users (running as root); Windows users (in a Command window ‘Run as Administrator’);

Instance Creation

This distribution of Apache HTTP Server is parameterized to allow multiple instances to be created and
managed independently, without duplicating the binary files. The instance directory is typically named for a
primary server hostname and contains the instance-specific directories conf, htdocs, logs and ssl (for
certificates and keys).

Unix users (running as root):

$ mkdir -p /opt/vmware/webserver

$ cd /opt/vmware/webserver

$ tar -xjvf {path-to}/httpd-2.4.55-230207-{arch}.tar.bz2

$ httpd-2.4.55-230207/bin/fixrootpath.pl httpd-2.4.55-230207

$ ln -s httpd-2.4.55-230207 httpd-2.4

Windows users (in PowerShell 'Run as Administrator');

C:\> mkdir \VMware\WebServer

Tanzu Spring

20

C:\> cd \VMware\WebServer

C:\[...]> unzip {path-to}\httpd-2.4.55-230207-windows-x64.zip

C:\[...]> powershell httpd-2.4.55-230207\bin\fixrootpath.ps1 httpd-2.4.55-230207

C:\[...]> mklink /d httpd-2.4 httpd-2.4.55-230207

Unix users (running as root);

$ cd /opt/vmware/webserver

$ httpd-2.4/bin/newserver.pl --server {hostname}

$ cd {hostname}

$ bin/httpdctl install

$ bin/httpdctl start

Modify the files in {hostname}/conf/ to customize the server behavior. Use the httpden

v script

in the bin directory of the instance to have access to the various tools shipped in th

e httpd-2.4

bin directory;

$. bin/httpdenv.sh

Or on Windows:

PS C:\VMware\WebServer\example.com> bin\httpdenv.ps1

The httpdctl uninstall command will remove the service from automatic startup at boot time. Updating
Instances In general, no special action is required when upgrading between httpd-2.4.x releases, directives
should be backwards-compatible. Restarting the server with httpdctl should be sufficient. From time to time,
httpdctl itself is upgraded, and to update the instance with refreshed control scripts, it is best to uninstall
any system service associated with the instance, use the –update feature of newserver.ps, and finally re-
install the system service (with potentially a new service name.) Unix Users (running as root):

1. Stop and uninstall the old instance:

$ cd /opt/vmware/webserver

$ {instance}/bin/httpdctl stop

$ {instance}/bin/httpdctl uninstall

1. Update the script with new features plus any revised service names:

$ httpd-2.4/bin/newserver.pl --server={instance} --update

1. Install and start the service with the new name:

$ {instance}/bin/httpdctl install

$ {instance}/bin/httpdctl start

1. Repeat steps 1-3 for each service.

RELEASE-NOTES-2-4-61-20240710201530

Updated: July 10, 2024

Build Date: July 10, 2024

What’s in the Release Notes

Package Description

Included Components

Tanzu Spring

21

RHEL 7 Users

RHEL 8 Users

RHEL 9 Users

Ubuntu Users

Microsoft Windows Users

Installation

Instance Creation

Updating Instances

Package Description

This package includes Apache HTTP Server (httpd), along with a number of frequently updated library
components (dependencies).

This package is structured to allow parallel installation of multiple releases of Apache HTTP Server and
related components. It contains one directory tree, labeled as 2.4.61-20240710201530 which represents the
current version of httpd and of all components bundled in the package as of the effective date. In this case,
all of the components reflect current releases as of the releases build date.

Unlike many httpd distributions, the end user instance configuration, server content, and logs are not
modified in this directory tree. See the section about Instance Creation for details of creating a server
instance with these user maintained files.

A tarball of the sources is provided alongside the binary release downloads, for ready reference.

Versions prior to 2.4.53 used the OpenSSL and PCRE-8.x legacy versions. As of httpd 2.4.53, OpenSSL
release 3.0 and PCRE2 release 10.x are used instead. If modules were also compiled to consume
OpenSSL or PCRE2 themselves, they must be rebuilt.

Downloading

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. An access token is
required to download.

httpd-rhel-2.4.61-20240710201530.tar.bz2

Included Components

The following components are included in this httpd-2.4.55-230207 build; those marked (*) are not compiled
on RHEL 7 and Ubuntu 18.04, but the OS Vendors’ distribution packages are used instead. Links to the
user change notes and vulnerability indexes are illustrated below. Packages updated since the previous
release httpd-2.4.54-220722 are identified in boldface. In cases where the project does not maintain a
reference to specific CVE’s in an easily web accessible format, the
https://www.cvedetails.com/vulnerability-list/ database link is provided; this list is not endorsed as complete
or comprehensive and is offered for convenience only.

Apache HTTPS Server 2.4.61

http://www.apache.org/dist/httpd/CHANGES_2.4

Tanzu Spring

22

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.61-20240710201530/httpd-rhel-2.4.61-20240710201530.tar.bz2

http://httpd.apache.org/security/vulnerabilities_24.html

Apache APR library 1.7.4

http://www.apache.org/dist/apr/CHANGES-APR-1.7

Apache APR-iconvlibrary 1.2.2
http://www.apache.org/dist/apr/CHANGES-APR-ICONV-1.2

Apache APR-utillibrary 1.6.3

http://www.apache.org/dist/apr/CHANGES-APR-UTIL-1.6

brotli compression library 1.0.9

https://github.com/google/brotli/releases

Curl 8.8.0
https://curl.haxx.se/changes.html https://curl.haxx.se/docs/security.html

expat 2.6.2

https://github.com/libexpat/libexpat/blob/master/expat/Changes

Jansson 2.14

https://jansson.readthedocs.io/en/stable/changes.html

libxml 2.13.1
https://www.cvedetails.com/vulnerability-list/vendor_id-1962/product_id-3311/Xmlsoft-
Libxml2.html

http://www.xmlsoft.org/news.html (out of date)

Lua language 5.4.7

https://www.cvedetails.com/vulnerability-list/vendor_id-13641/product_id-28436/LUA-
LUA.html

https://www.lua.org/bugs.html

nghttp2 library 1.62.1

https://github.com/nghttp2/nghttp2/releases

OpenSSL library openssl-3.3.1
https://www.openssl.org/news/vulnerabilities.html

https://www.openssl.org/news/changelog.html

PCRE2 library 10.44

https://www.cvedetails.com/vulnerability-list/vendor_id-3265/product_id-33513/Pcre-
cre2.html

https://www.pcre.org/changelog.txt

Zlib compression librar 1.3.1

https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html

https://zlib.net/ChangeLog.txt

RHEL 7 Users

Tanzu Spring

23

The RHEL 7 package requires several commonly installed packages to be available. These can be
provisioned with the following command:

$ yum install expat jansson libuuid libxml2 lua pcre2 zlib

Note the addition of the jansson package to this list since the 2.4.29-171109 release, and the change to
pcre2 since the 2.4.51-211007 release. To use the provided apxs utility, additional packages are required as
indicated at the https://github.com/vmware-tanzu/ oss-httpd-build README page.

RHEL 8 Users

The RHEL 7 package is compatible with RHEL 8 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

RHEL 9 Users

The RHEL 7 package is compatible with RHEL 9 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib libxcrypt-compat

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

Ubuntu 20.04 and 22.04 Users

The Ubuntu package requires several commonly installed packages to be available, these may be
provisioned with the following command:

$ apt-get -y install libexpat1 libjansson4 liblua5.3-0 libpcre2-8-0 libxml2 zlib1g bzi

p2

Note the addition of the libjansson4 package and corrected liblua5.3-0 and libxml2 package names to this
list since the 2.4.29-171109 release, and the change to libpcre2-8-0 since the 2.4.51-211007 release. To use
the provided apxs utility, additional packages are required as indicated at the https://github.com/vmware-
tanzu/oss-httpd-build README page.

Users can still build this package from source for the Ubuntu 16.04 operating system, see
https://github.com/vmware-tanzu/oss-httpd-build#readme, however, that OS is no longer
supported.

Tanzu Spring

24

Microsoft Windows Users

This package is built using Visual C++ 19 and C Runtime version 14, components of Microsoft Visual
Studio 2022. Windows Server 2022 and Windows Server 2019 are both suitable for deployment. Windows
10 Desktop and Windows 11 Desktop are suitable for developer evaluation, but are not suitable for server
deployment, as Microsoft restricts the Windows Desktop license, limiting aspects of the operating system
behavior, including the Windows Sockets API, and tunes the process scheduler to deliver a better desktop
experience. Users must obtain and install the “Microsoft Visual C++ Redistributable for Visual Studio 2022”,
x64 edition from https://visualstudio.microsoft.com/downloads/ (currently this is listed under Other Tools
and Frameworks, and provides support for Visual Studio 2015, 2017 and 2019 as well.) Install the x64
flavor, and observe the prerequisites noted for that package. Installing this package from Microsoft ensures
that this runtime is updated by the Windows Update service for security vulnerabilities within the Universal
C Runtime itself.

Note that VMware convenience packages prior to httpd 2.4.53 were built with Visual Studio 2017 or 2019.
This may cause issues for users who have compiled third-party modules. Users are advised to rebuild any
such modules before combining them with these newer packages. This package relies upon Windows
PowerShell to execute the httpd control scripts on Windows computers. All supported Windows versions
have PowerShell installed by default, but specific installations of Windows may not. To check whether your
version of Windows has PowerShell installed, go to Start > All Programs > Accessories and check for
Windows PowerShell in the list.

If Windows PowerShell is not already installed, install it, as directed, at https://docs.microsoft.com/en-
us/powershell/scripting/setup/setup-reference.

If necessary, enable Windows PowerShell for script processing; script processing may be disabled by
default:

1. Start PowerShell from the Start Menu as an Administrator by opening Start > All Programs

Accessories > Windows PowerShell, then right-clicking on Windows PowerShell and selecting Run as
Administrator. A PowerShell window starts.

1. Check the current PowerShell setting by executing the following command: PS prompt> Get-
ExecutionPolicy.

2. If the command returns Restricted, it means that PowerShell is not yet enabled. Enable it to allow
local script processing at a minimum by executing the following command: PS prompt> Set-
ExecutionPolicy RemoteSigned

3. You can choose a different execution policy for your organization, and enable PowerShell using
Group and User policies. Typically, only the Administrator will be using the server control scripts, so
the RemoteSigned execution policy should be adequate in most cases.

Windows users must take note that extracting the zip file contents using the File Explorer from a remote
drive or volume, or from an untrusted “blocked” file will result in untrusted and non-executable files and
scripts. For the windows binary package, copy the .zip file to a local drive before using the File Explorer
extraction tool. If the .zip file was downloaded, then using the Windows File Explorer examine the .zip file
properties, and under Security below the Attributes item, check the Unblock check box to mark the zip file
contents as trusted. If the Security item is not present, the file is already unblocked.

In the command-line example given below, unzip is provided by info-zip, while mklink is an intrinsic
cmd.exe command which is not provided by PowerShell.

Tanzu Spring

25

Installation

Create the desired install path, such as /opt/vmware/webserver or C:\VMware\WebServer, and unpack the
tar.bz2 or .zip file into that directory. From this root directory, then invoke the fixrootpath script to correct the
embedded paths to the current path, and finally create a symlink ‘httpd-2.4’ in parallel to the installed httpd
product path, once ready to adopt this installation as the “accepted” httpd-2.4 installation. During an
upgrade, restart each server instance individually and verify the correct operation of that instance’s hosts. If
there is a problem resulting from an upgrade, simply restore the symlink to the previously installed httpd
path, and restart the servers with the old version to avoid unnecessary interruption. When correct operation
is verified the older httpd version can be expunged.

Unix users (running as root); Windows users (in a Command window ‘Run as Administrator’);

Instance Creation

This distribution of Apache HTTP Server is parameterized to allow multiple instances to be created and
managed independently, without duplicating the binary files. The instance directory is typically named for a
primary server hostname and contains the instance-specific directories conf, htdocs, logs and ssl (for
certificates and keys).

Unix users (running as root):

$ mkdir -p /opt/vmware/webserver

$ cd /opt/vmware/webserver

$ tar -xjvf {path-to}/httpd-2.4.55-230207-{arch}.tar.bz2

$ httpd-2.4.55-230207/bin/fixrootpath.pl httpd-2.4.55-230207

$ ln -s httpd-2.4.55-230207 httpd-2.4

Windows users (in PowerShell 'Run as Administrator');

C:\> mkdir \VMware\WebServer

C:\> cd \VMware\WebServer

C:\[...]> unzip {path-to}\httpd-2.4.55-230207-windows-x64.zip

C:\[...]> powershell httpd-2.4.55-230207\bin\fixrootpath.ps1 httpd-2.4.55-230207

C:\[...]> mklink /d httpd-2.4 httpd-2.4.55-230207

Unix users (running as root);

$ cd /opt/vmware/webserver

$ httpd-2.4/bin/newserver.pl --server {hostname}

$ cd {hostname}

$ bin/httpdctl install

$ bin/httpdctl start

Modify the files in {hostname}/conf/ to customize the server behavior. Use the httpden

v script

in the bin directory of the instance to have access to the various tools shipped in th

e httpd-2.4

bin directory;

$. bin/httpdenv.sh

Or on Windows:

PS C:\VMware\WebServer\example.com> bin\httpdenv.ps1

The httpdctl uninstall command will remove the service from automatic startup at boot time. Updating
Instances In general, no special action is required when upgrading between httpd-2.4.x releases, directives
should be backwards-compatible. Restarting the server with httpdctl should be sufficient. From time to time,
httpdctl itself is upgraded, and to update the instance with refreshed control scripts, it is best to uninstall

Tanzu Spring

26

any system service associated with the instance, use the –update feature of newserver.ps, and finally re-
install the system service (with potentially a new service name.) Unix Users (running as root):

1. Stop and uninstall the old instance:

$ cd /opt/vmware/webserver

$ {instance}/bin/httpdctl stop

$ {instance}/bin/httpdctl uninstall

1. Update the script with new features plus any revised service names:

$ httpd-2.4/bin/newserver.pl --server={instance} --update

1. Install and start the service with the new name:

$ {instance}/bin/httpdctl install

$ {instance}/bin/httpdctl start

1. Repeat steps 1-3 for each service.

RELEASE-NOTES-2-4-62-20240717172113

Updated: July 03, 2024

Build Date: July 03, 2024

What’s in the Release Notes

Package Description

Included Components

RHEL 7 Users

RHEL 8 Users

RHEL 9 Users

Ubuntu Users

Microsoft Windows Users

Installation

Instance Creation

Updating Instances

Package Description

This package includes Apache HTTP Server (httpd), along with a number of frequently updated library
components (dependencies).

This package is structured to allow parallel installation of multiple releases of Apache HTTP Server and
related components. It contains one directory tree, labeled as 2.4.62-20240717172113 which represents the
current version of httpd and of all components bundled in the package as of the effective date. In this case,
all of the components reflect current releases as of the releases build date.

Tanzu Spring

27

Unlike many httpd distributions, the end user instance configuration, server content, and logs are not
modified in this directory tree. See the section about Instance Creation for details of creating a server
instance with these user maintained files.

A tarball of the sources is provided alongside the binary release downloads, for ready reference.

Versions prior to 2.4.53 used the OpenSSL and PCRE-8.x legacy versions. As of httpd 2.4.53, OpenSSL
release 3.0 and PCRE2 release 10.x are used instead. If modules were also compiled to consume
OpenSSL or PCRE2 themselves, they must be rebuilt.

Downloading

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. An access token is
required to download.

httpd-ubuntu-2.4.62-20240717172113.tar.bz2

httpd-windows-x64-2.4.62-20240717172113.zip

httpd-rhel-2.4.62-20240717172113.tar.bz2

httpd-sources-2.4.62-20240717172113.zip

release-notes-2.4.62-20240717172113.md

Included Components

The following components are included in this httpd-2.4.55-230207 build; those marked (*) are not compiled
on RHEL 7 and Ubuntu 18.04, but the OS Vendors’ distribution packages are used instead. Links to the
user change notes and vulnerability indexes are illustrated below. Packages updated since the previous
release httpd-2.4.54-220722 are identified in boldface. In cases where the project does not maintain a
reference to specific CVE’s in an easily web accessible format, the
https://www.cvedetails.com/vulnerability-list/ database link is provided; this list is not endorsed as complete
or comprehensive and is offered for convenience only.

Apache HTTPS Server 2.4.62

http://www.apache.org/dist/httpd/CHANGES_2.4

http://httpd.apache.org/security/vulnerabilities_24.html

Apache APR library 1.7.4
http://www.apache.org/dist/apr/CHANGES-APR-1.7

Apache APR-iconvlibrary 1.2.2

http://www.apache.org/dist/apr/CHANGES-APR-ICONV-1.2

Apache APR-utillibrary 1.6.3

http://www.apache.org/dist/apr/CHANGES-APR-UTIL-1.6

brotli compression library 1.0.9
https://github.com/google/brotli/releases

Curl 8.8.0

https://curl.haxx.se/changes.html https://curl.haxx.se/docs/security.html

Tanzu Spring

28

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.62-20240717172113/httpd-ubuntu-2.4.62-20240717172113.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.62-20240717172113/httpd-windows-2.4.62-20240717172113.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.62-20240717172113/httpd-rhel-2.4.62-20240717172113.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources/2.4.62-20240717172113/httpd-sources-2.4.62-20240717172113.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.62-20240717172113/release-notes-2.4.62-20240717172113.md

expat 2.6.2

https://github.com/libexpat/libexpat/blob/master/expat/Changes

Jansson 2.14
https://jansson.readthedocs.io/en/stable/changes.html

libxml 2.13.2

https://www.cvedetails.com/vulnerability-list/vendor_id-1962/product_id-3311/Xmlsoft-
Libxml2.html

http://www.xmlsoft.org/news.html (out of date)

Lua language 5.4.7

https://www.cvedetails.com/vulnerability-list/vendor_id-13641/product_id-28436/LUA-
LUA.html

https://www.lua.org/bugs.html

nghttp2 library 1.62.1
https://github.com/nghttp2/nghttp2/releases

OpenSSL library openssl-3.3.1

https://www.openssl.org/news/vulnerabilities.html

https://www.openssl.org/news/changelog.html

PCRE2 library 10.44

https://www.cvedetails.com/vulnerability-list/vendor_id-3265/product_id-33513/Pcre-
cre2.html

https://www.pcre.org/changelog.txt

Zlib compression librar 1.3.1
https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html

https://zlib.net/ChangeLog.txt

RHEL 7 Users

The RHEL 7 package requires several commonly installed packages to be available. These can be
provisioned with the following command:

$ yum install expat jansson libuuid libxml2 lua pcre2 zlib

Note the addition of the jansson package to this list since the 2.4.29-171109 release, and the change to
pcre2 since the 2.4.51-211007 release. To use the provided apxs utility, additional packages are required as
indicated at the https://github.com/vmware-tanzu/ oss-httpd-build README page.

RHEL 8 Users

The RHEL 7 package is compatible with RHEL 8 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib

Tanzu Spring

29

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

RHEL 9 Users

The RHEL 7 package is compatible with RHEL 9 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib libxcrypt-compat

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

Ubuntu 20.04 and 22.04 Users

The Ubuntu package requires several commonly installed packages to be available, these may be
provisioned with the following command:

$ apt-get -y install libexpat1 libjansson4 liblua5.3-0 libpcre2-8-0 libxml2 zlib1g bzi

p2

Note the addition of the libjansson4 package and corrected liblua5.3-0 and libxml2 package names to this
list since the 2.4.29-171109 release, and the change to libpcre2-8-0 since the 2.4.51-211007 release. To use
the provided apxs utility, additional packages are required as indicated at the https://github.com/vmware-
tanzu/oss-httpd-build README page.

Microsoft Windows Users

This package is built using Visual C++ 19 and C Runtime version 14, components of Microsoft Visual
Studio 2022. Windows Server 2022 and Windows Server 2019 are both suitable for deployment. Windows
10 Desktop and Windows 11 Desktop are suitable for developer evaluation, but are not suitable for server
deployment, as Microsoft restricts the Windows Desktop license, limiting aspects of the operating system
behavior, including the Windows Sockets API, and tunes the process scheduler to deliver a better desktop
experience. Users must obtain and install the “Microsoft Visual C++ Redistributable for Visual Studio 2022”,
x64 edition from https://visualstudio.microsoft.com/downloads/ (currently this is listed under Other Tools
and Frameworks, and provides support for Visual Studio 2015, 2017 and 2019 as well.) Install the x64
flavor, and observe the prerequisites noted for that package. Installing this package from Microsoft ensures
that this runtime is updated by the Windows Update service for security vulnerabilities within the Universal
C Runtime itself.

Note that VMware convenience packages prior to httpd 2.4.53 were built with Visual Studio 2017 or 2019.
This may cause issues for users who have compiled third-party modules. Users are advised to rebuild any

Users can still build this package from source for the Ubuntu 16.04 operating system, see
https://github.com/vmware-tanzu/oss-httpd-build#readme, however, that OS is no longer
supported.

Tanzu Spring

30

such modules before combining them with these newer packages. This package relies upon Windows
PowerShell to execute the httpd control scripts on Windows computers. All supported Windows versions
have PowerShell installed by default, but specific installations of Windows may not. To check whether your
version of Windows has PowerShell installed, go to Start > All Programs > Accessories and check for
Windows PowerShell in the list.

If Windows PowerShell is not already installed, install it as directed at; https://docs.microsoft.com/en-
us/powershell/scripting/setup/setup-reference.

If necessary, enable Windows PowerShell for script processing; script processing may be disabled by
default:

1. Start PowerShell from the Start Menu as an Administrator by opening Start > All Programs

Accessories > Windows PowerShell, then right-clicking on Windows PowerShell and selecting Run as
Administrator. A PowerShell window starts.

1. Check the current PowerShell setting by executing the following command: PS prompt> Get-
ExecutionPolicy.

2. If the command returns Restricted, it means that PowerShell is not yet enabled. Enable it to allow
local script processing at a minimum by executing the following command: PS prompt> Set-
ExecutionPolicy RemoteSigned

3. You can choose a different execution policy for your organization, and enable PowerShell using
Group and User policies. Typically, only the Administrator will be using the server control scripts, so
the RemoteSigned execution policy should be adequate in most cases.

Windows users must take note that extracting the zip file contents using the File Explorer from a remote
drive or volume, or from an untrusted “blocked” file will result in untrusted and non-executable files and
scripts. For the windows binary package, copy the .zip file to a local drive before using the File Explorer
extraction tool. If the .zip file was downloaded, then using the Windows File Explorer examine the .zip file
properties, and under Security below the Attributes item, check the Unblock check box to mark the zip file
contents as trusted. If the Security item is not present, the file is already unblocked.

In the command-line example given below, unzip is provided by info-zip, while mklink is an intrinsic
cmd.exe command which is not provided by PowerShell.

Installation

Create the desired install path, such as /opt/vmware/webserver or C:\VMware\WebServer, and unpack the
tar.bz2 or .zip file into that directory. From this root directory, then invoke the fixrootpath script to correct the
embedded paths to the current path, and finally create a symlink ‘httpd-2.4’ in parallel to the installed httpd
product path, once ready to adopt this installation as the “accepted” httpd-2.4 installation. During an
upgrade, restart each server instance individually and verify the correct operation of that instance’s hosts. If
there is a problem resulting from an upgrade, simply restore the symlink to the previously installed httpd
path, and restart the servers with the old version to avoid unnecessary interruption. When correct operation
is verified the older httpd version can be expunged.

Unix users (running as root); Windows users (in a Command window ‘Run as Administrator’);

Instance Creation

Tanzu Spring

31

This distribution of Apache HTTP Server is parameterized to allow multiple instances to be created and
managed independently, without duplicating the binary files. The instance directory is typically named for a
primary server hostname and contains the instance-specific directories conf, htdocs, logs and ssl (for
certificates and keys).

Unix users (running as root):

$ mkdir -p /opt/vmware/webserver

$ cd /opt/vmware/webserver

$ tar -xjvf {path-to}/httpd-2.4.55-230207-{arch}.tar.bz2

$ httpd-2.4.55-230207/bin/fixrootpath.pl httpd-2.4.55-230207

$ ln -s httpd-2.4.55-230207 httpd-2.4

Windows users (in PowerShell 'Run as Administrator');

C:\> mkdir \VMware\WebServer

C:\> cd \VMware\WebServer

C:\[...]> unzip {path-to}\httpd-2.4.55-230207-windows-x64.zip

C:\[...]> powershell httpd-2.4.55-230207\bin\fixrootpath.ps1 httpd-2.4.55-230207

C:\[...]> mklink /d httpd-2.4 httpd-2.4.55-230207

Unix users (running as root);

$ cd /opt/vmware/webserver

$ httpd-2.4/bin/newserver.pl --server {hostname}

$ cd {hostname}

$ bin/httpdctl install

$ bin/httpdctl start

Modify the files in {hostname}/conf/ to customize the server behavior. Use the httpden

v script

in the bin directory of the instance to have access to the various tools shipped in th

e httpd-2.4

bin directory;

$. bin/httpdenv.sh

Or on Windows:

PS C:\VMware\WebServer\example.com> bin\httpdenv.ps1

The httpdctl uninstall command will remove the service from automatic startup at boot time. Updating
Instances In general, no special action is required when upgrading between httpd-2.4.x releases, directives
should be backwards-compatible. Restarting the server with httpdctl should be sufficient. From time to time,
httpdctl itself is upgraded, and to update the instance with refreshed control scripts, it is best to uninstall
any system service associated with the instance, use the –update feature of newserver.ps, and finally re-
install the system service (with potentially a new service name.) Unix Users (running as root):

1. Stop and uninstall the old instance:

$ cd /opt/vmware/webserver

$ {instance}/bin/httpdctl stop

$ {instance}/bin/httpdctl uninstall

1. Update the script with new features plus any revised service names:

$ httpd-2.4/bin/newserver.pl --server={instance} --update

1. Install and start the service with the new name:

Tanzu Spring

32

$ {instance}/bin/httpdctl install

$ {instance}/bin/httpdctl start

1. Repeat steps 1-3 for each service.

RELEASE-NOTES-2-4-62-20240828181951

Updated: July 03, 2024

Build Date: July 03, 2024

What’s in the Release Notes

Package Description

Included Components

RHEL 7 Users

RHEL 8 Users

RHEL 9 Users

Ubuntu Users

Microsoft Windows Users

Installation

Instance Creation

Updating Instances

Package Description

This package includes Apache HTTP Server (httpd), along with a number of frequently updated library
components (dependencies).

This package is structured to allow parallel installation of multiple releases of Apache HTTP Server and
related components. It contains one directory tree, labeled as 2.4.62-20240828181951 which represents the
current version of httpd and of all components bundled in the package as of the effective date. In this case,
all of the components reflect current releases as of the releases build date.

Unlike many httpd distributions, the end user instance configuration, server content, and logs are not
modified in this directory tree. See the section about Instance Creation for details of creating a server
instance with these user maintained files.

A tarball of the sources is provided alongside the binary release downloads, for ready reference.

Versions prior to 2.4.53 used the OpenSSL and PCRE-8.x legacy versions. As of httpd 2.4.53, OpenSSL
release 3.0 and PCRE2 release 10.x are used instead. If modules were also compiled to consume
OpenSSL or PCRE2 themselves, they must be rebuilt.

Downloading

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. An access token is
required to download.

Tanzu Spring

33

httpd-ubuntu-2.4.62-20240828181951.tar.bz2

httpd-windows-x64-2.4.62-20240828181951.zip

httpd-rhel-2.4.62-20240828181951.tar.bz2

httpd-sources-2.4.62-20240828181951.zip

release-notes-2.4.62-20240828181951.md

Included Components

The following components are included in this httpd-2.4.55-230207 build; those marked (*) are not compiled
on RHEL 7 and Ubuntu 18.04, but the OS Vendors’ distribution packages are used instead. Links to the
user change notes and vulnerability indexes are illustrated below. Packages updated since the previous
release httpd-2.4.54-220722 are identified in boldface. In cases where the project does not maintain a
reference to specific CVE’s in an easily web accessible format, the
https://www.cvedetails.com/vulnerability-list/ database link is provided; this list is not endorsed as complete
or comprehensive and is offered for convenience only.

Apache HTTPS Server 2.4.62

http://www.apache.org/dist/httpd/CHANGES_2.4

http://httpd.apache.org/security/vulnerabilities_24.html

Apache APR library 1.7.5
http://www.apache.org/dist/apr/CHANGES-APR-1.7

Apache APR-iconvlibrary 1.2.2

http://www.apache.org/dist/apr/CHANGES-APR-ICONV-1.2

Apache APR-utillibrary 1.6.3

http://www.apache.org/dist/apr/CHANGES-APR-UTIL-1.6

brotli compression library 1.0.9
https://github.com/google/brotli/releases

Curl 8.8.0

https://curl.haxx.se/changes.html https://curl.haxx.se/docs/security.html

expat 2.6.2

https://github.com/libexpat/libexpat/blob/master/expat/Changes

Jansson 2.14
https://jansson.readthedocs.io/en/stable/changes.html

libxml 2.11.9

https://www.cvedetails.com/vulnerability-list/vendor_id-1962/product_id-3311/Xmlsoft-
Libxml2.html

http://www.xmlsoft.org/news.html (out of date)

Lua language 5.4.7

https://www.cvedetails.com/vulnerability-list/vendor_id-13641/product_id-28436/LUA-
LUA.html

Tanzu Spring

34

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.62-20240828181951/httpd-ubuntu-2.4.62-20240828181951.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.62-20240828181951/httpd-windows-2.4.62-20240828181951.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.62-20240828181951/httpd-rhel-2.4.62-20240828181951.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources/2.4.62-20240828181951/httpd-sources-2.4.62-20240828181951-ubuntu.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.62-20240828181951/release-notes-2.4.62-20240828181951.md

https://www.lua.org/bugs.html

nghttp2 library 1.63.0

https://github.com/nghttp2/nghttp2/releases

OpenSSL library openssl-3.3.1
https://www.openssl.org/news/vulnerabilities.html

https://www.openssl.org/news/changelog.html

PCRE2 library 10.44

https://www.cvedetails.com/vulnerability-list/vendor_id-3265/product_id-33513/Pcre-
cre2.html

https://www.pcre.org/changelog.txt

Zlib compression librar 1.3.1

https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html

https://zlib.net/ChangeLog.txt

RHEL 7 Users

The RHEL 7 package requires several commonly installed packages to be available. These can be
provisioned with the following command:

$ yum install expat jansson libuuid libxml2 lua pcre2 zlib

Note the addition of the jansson package to this list since the 2.4.29-171109 release, and the change to
pcre2 since the 2.4.51-211007 release. To use the provided apxs utility, additional packages are required as
indicated at the https://github.com/vmware-tanzu/ oss-httpd-build README page.

RHEL 8 Users

The RHEL 7 package is compatible with RHEL 8 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

RHEL 9 Users

The RHEL 7 package is compatible with RHEL 9 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib libxcrypt-compat

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages

Tanzu Spring

35

are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

Ubuntu 20.04 and 22.04 Users

The Ubuntu package requires several commonly installed packages to be available, these may be
provisioned with the following command:

$ apt-get -y install libexpat1 libjansson4 liblua5.3-0 libpcre2-8-0 libxml2 zlib1g bzi

p2

Note the addition of the libjansson4 package and corrected liblua5.3-0 and libxml2 package names to this
list since the 2.4.29-171109 release, and the change to libpcre2-8-0 since the 2.4.51-211007 release. To use
the provided apxs utility, additional packages are required as indicated at the https://github.com/vmware-
tanzu/oss-httpd-build README page.

Microsoft Windows Users

This package is built using Visual C++ 19 and C Runtime version 14, components of Microsoft Visual
Studio 2022. Windows Server 2022 and Windows Server 2019 are both suitable for deployment. Windows
10 Desktop and Windows 11 Desktop are suitable for developer evaluation, but are not suitable for server
deployment, as Microsoft restricts the Windows Desktop license, limiting aspects of the operating system
behavior, including the Windows Sockets API, and tunes the process scheduler to deliver a better desktop
experience. Users must obtain and install the “Microsoft Visual C++ Redistributable for Visual Studio 2022”,
x64 edition from https://visualstudio.microsoft.com/downloads/ (currently this is listed under Other Tools
and Frameworks, and provides support for Visual Studio 2015, 2017 and 2019 as well.) Install the x64
flavor, and observe the prerequisites noted for that package. Installing this package from Microsoft ensures
that this runtime is updated by the Windows Update service for security vulnerabilities within the Universal
C Runtime itself.

Note that VMware convenience packages prior to httpd 2.4.53 were built with Visual Studio 2017 or 2019.
This may cause issues for users who have compiled third-party modules. Users are advised to rebuild any
such modules before combining them with these newer packages. This package relies upon Windows
PowerShell to execute the httpd control scripts on Windows computers. All supported Windows versions
have PowerShell installed by default, but specific installations of Windows may not. To check whether your
version of Windows has PowerShell installed, go to Start > All Programs > Accessories and check for
Windows PowerShell in the list.

If Windows PowerShell is not already installed, install it as directed at; https://docs.microsoft.com/en-
us/powershell/scripting/setup/setup-reference.

If necessary, enable Windows PowerShell for script processing; script processing may be disabled by
default:

1. Start PowerShell from the Start Menu as an Administrator by opening Start > All Programs

Users can still build this package from source for the Ubuntu 16.04 operating system, see
https://github.com/vmware-tanzu/oss-httpd-build#readme, however, that OS is no longer
supported.

Tanzu Spring

36

Accessories > Windows PowerShell, then right-clicking on Windows PowerShell and selecting Run as
Administrator. A PowerShell window starts.

1. Check the current PowerShell setting by executing the following command: PS prompt> Get-
ExecutionPolicy.

2. If the command returns Restricted, it means that PowerShell is not yet enabled. Enable it to allow
local script processing at a minimum by executing the following command: PS prompt> Set-
ExecutionPolicy RemoteSigned

3. You can choose a different execution policy for your organization, and enable PowerShell using
Group and User policies. Typically, only the Administrator will be using the server control scripts, so
the RemoteSigned execution policy should be adequate in most cases.

Windows users must take note that extracting the zip file contents using the File Explorer from a remote
drive or volume, or from an untrusted “blocked” file will result in untrusted and non-executable files and
scripts. For the windows binary package, copy the .zip file to a local drive before using the File Explorer
extraction tool. If the .zip file was downloaded, then using the Windows File Explorer examine the .zip file
properties, and under Security below the Attributes item, check the Unblock check box to mark the zip file
contents as trusted. If the Security item is not present, the file is already unblocked.

In the command-line example given below, unzip is provided by info-zip, while mklink is an intrinsic
cmd.exe command which is not provided by PowerShell.

Installation

Create the desired install path, such as /opt/vmware/webserver or C:\VMware\WebServer, and unpack the
tar.bz2 or .zip file into that directory. From this root directory, then invoke the fixrootpath script to correct the
embedded paths to the current path, and finally create a symlink ‘httpd-2.4’ in parallel to the installed httpd
product path, once ready to adopt this installation as the “accepted” httpd-2.4 installation. During an
upgrade, restart each server instance individually and verify the correct operation of that instance’s hosts. If
there is a problem resulting from an upgrade, simply restore the symlink to the previously installed httpd
path, and restart the servers with the old version to avoid unnecessary interruption. When correct operation
is verified the older httpd version can be expunged.

Unix users (running as root); Windows users (in a Command window ‘Run as Administrator’);

Instance Creation

This distribution of Apache HTTP Server is parameterized to allow multiple instances to be created and
managed independently, without duplicating the binary files. The instance directory is typically named for a
primary server hostname and contains the instance-specific directories conf, htdocs, logs and ssl (for
certificates and keys).

Unix users (running as root):

$ mkdir -p /opt/vmware/webserver

$ cd /opt/vmware/webserver

$ tar -xjvf {path-to}/httpd-2.4.55-230207-{arch}.tar.bz2

$ httpd-2.4.55-230207/bin/fixrootpath.pl httpd-2.4.55-230207

$ ln -s httpd-2.4.55-230207 httpd-2.4

Windows users (in PowerShell 'Run as Administrator');

C:\> mkdir \VMware\WebServer

Tanzu Spring

37

C:\> cd \VMware\WebServer

C:\[...]> unzip {path-to}\httpd-2.4.55-230207-windows-x64.zip

C:\[...]> powershell httpd-2.4.55-230207\bin\fixrootpath.ps1 httpd-2.4.55-230207

C:\[...]> mklink /d httpd-2.4 httpd-2.4.55-230207

Unix users (running as root);

$ cd /opt/vmware/webserver

$ httpd-2.4/bin/newserver.pl --server {hostname}

$ cd {hostname}

$ bin/httpdctl install

$ bin/httpdctl start

Modify the files in {hostname}/conf/ to customize the server behavior. Use the httpden

v script

in the bin directory of the instance to have access to the various tools shipped in th

e httpd-2.4

bin directory;

$. bin/httpdenv.sh

Or on Windows:

PS C:\VMware\WebServer\example.com> bin\httpdenv.ps1

The httpdctl uninstall command will remove the service from automatic startup at boot time. Updating
Instances In general, no special action is required when upgrading between httpd-2.4.x releases, directives
should be backwards-compatible. Restarting the server with httpdctl should be sufficient. From time to time,
httpdctl itself is upgraded, and to update the instance with refreshed control scripts, it is best to uninstall
any system service associated with the instance, use the –update feature of newserver.ps, and finally re-
install the system service (with potentially a new service name.) Unix Users (running as root):

1. Stop and uninstall the old instance:

$ cd /opt/vmware/webserver

$ {instance}/bin/httpdctl stop

$ {instance}/bin/httpdctl uninstall

1. Update the script with new features plus any revised service names:

$ httpd-2.4/bin/newserver.pl --server={instance} --update

1. Install and start the service with the new name:

$ {instance}/bin/httpdctl install

$ {instance}/bin/httpdctl start

1. Repeat steps 1-3 for each service.

RELEASE-NOTES-2-4-62-20240904201630

Updated: November 06, 2024

Build Date: September 04, 2024

What’ in the Release Notes

Package Description

Included Components

Tanzu Spring

38

RHEL 7 Users

RHEL 8 Users

RHEL 9 Users

Ubuntu Users

Microsoft Windows Users

Installation

Instance Creation

Updating Instances

Package Description

This package includes Apache HTTP Server (httpd), along with a number of frequently updated library
components (dependencies).

This package is structured to allow parallel installation of multiple releases of Apache HTTP Server and
related components. It contains one directory tree, labeled as 2.4.62-20240904201630 which represents the
current version of httpd and of all components bundled in the package as of the effective date. In this case,
all of the components reflect current releases as of the releases build date.

Unlike many httpd distributions, the end user instance configuration, server content, and logs are not
modified in this directory tree. See the section about Instance Creation for details of creating a server
instance with these user maintained files.

A tarball of the sources is provided alongside the binary release downloads, for ready reference.

Versions prior to 2.4.53 used the OpenSSL and PCRE-8.x legacy versions. As of httpd 2.4.53, OpenSSL
release 3.0 and PCRE2 release 10.x are used instead. If modules were also compiled to consume
OpenSSL or PCRE2 themselves, they must be rebuilt.

Downloading

Apache HTTP built by VMware is distributed as part of Spring Enterprise Subscription. An access token is
required to download.

httpd-ubuntu-2.4.62-20240904201630.tar.bz2

httpd-windows-x64-2.4.62-20240904201630.zip

httpd-rhel-2.4.62-20240904201630.tar.bz2

httpd-sources-ubuntu-2.4.62-20240904201630.zip

release-notes-2.4.62-20240904201630.md

Included Components

The following components are included in this httpd-2.4.55-230207 build; those marked (*) are not compiled
on RHEL 7 and Ubuntu 18.04, but the OS Vendors’ distribution packages are used instead. Links to the
user change notes and vulnerability indexes are illustrated below. Packages updated since the previous
release httpd-2.4.54-220722 are identified in boldface. In cases where the project does not maintain a

Tanzu Spring

39

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.62-20240904201630/httpd-ubuntu-2.4.62-20240904201630.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.62-20240904201630/httpd-windows-2.4.62-20240904201630.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.62-20240904201630/httpd-rhel-2.4.62-20240904201630.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources-ubuntu/2.4.62-20240904201630/httpd-sources-ubuntu-2.4.62-20240904201630.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.62-20240904201630/release-notes-2.4.62-20240904201630.md

reference to specific CVE’s in an easily web accessible format, the
https://www.cvedetails.com/vulnerability-list/ database link is provided; this list is not endorsed as complete
or comprehensive and is offered for convenience only.

Apache HTTPS Server 2.4.62

http://www.apache.org/dist/httpd/CHANGES_2.4

http://httpd.apache.org/security/vulnerabilities_24.html

Apache APR library 1.7.5
http://www.apache.org/dist/apr/CHANGES-APR-1.7

Apache APR-iconvlibrary 1.2.2

http://www.apache.org/dist/apr/CHANGES-APR-ICONV-1.2

Apache APR-utillibrary 1.6.3

http://www.apache.org/dist/apr/CHANGES-APR-UTIL-1.6

brotli compression library 1.0.9
https://github.com/google/brotli/releases

Curl 8.8.0

https://curl.haxx.se/changes.html https://curl.haxx.se/docs/security.html

expat 2.6.3

https://github.com/libexpat/libexpat/blob/master/expat/Changes

Jansson 2.14
https://jansson.readthedocs.io/en/stable/changes.html

libxml 2.11.9

https://www.cvedetails.com/vulnerability-list/vendor_id-1962/product_id-3311/Xmlsoft-
Libxml2.html

http://www.xmlsoft.org/news.html (out of date)

Lua language 5.4.7

https://www.cvedetails.com/vulnerability-list/vendor_id-13641/product_id-28436/LUA-
LUA.html

https://www.lua.org/bugs.html

nghttp2 library 1.63.0
https://github.com/nghttp2/nghttp2/releases

OpenSSL library openssl-3.3.2

https://www.openssl.org/news/vulnerabilities.html

https://www.openssl.org/news/changelog.html

PCRE2 library 10.44

https://www.cvedetails.com/vulnerability-list/vendor_id-3265/product_id-33513/Pcre-
cre2.html

https://www.pcre.org/changelog.txt

Zlib compression librar 1.3.1

Tanzu Spring

40

https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html

https://zlib.net/ChangeLog.txt

RHEL 7 Users

The RHEL 7 package requires several commonly installed packages to be available. These can be
provisioned with the following command:

$ yum install expat jansson libuuid libxml2 lua pcre2 zlib

Note the addition of the jansson package to this list since the 2.4.29-171109 release, and the change to
pcre2 since the 2.4.51-211007 release. To use the provided apxs utility, additional packages are required as
indicated at the https://github.com/vmware-tanzu/ oss-httpd-build README page.

RHEL 8 Users

The RHEL 7 package is compatible with RHEL 8 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

RHEL 9 Users

The RHEL 7 package is compatible with RHEL 9 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib libxcrypt-compat

Note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt may go
by the package designation libxcrypt-compat instead. To use the provided apxs utility, additional packages
are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build README page.

Ubuntu 20.04 and 22.04 Users

The Ubuntu package requires several commonly installed packages to be available, these may be
provisioned with the following command:

$ apt-get -y install libexpat1 libjansson4 liblua5.3-0 libpcre2-8-0 libxml2 zlib1g bzi

p2

Note the addition of the libjansson4 package and corrected liblua5.3-0 and libxml2 package names to this
list since the 2.4.29-171109 release, and the change to libpcre2-8-0 since the 2.4.51-211007 release. To use
the provided apxs utility, additional packages are required as indicated at the https://github.com/vmware-
tanzu/oss-httpd-build README page.

Tanzu Spring

41

Microsoft Windows Users

This package is built using Visual C++ 19 and C Runtime version 14, components of Microsoft Visual
Studio 2022. Windows Server 2022 and Windows Server 2019 are both suitable for deployment. Windows
10 Desktop and Windows 11 Desktop are suitable for developer evaluation, but are not suitable for server
deployment, as Microsoft restricts the Windows Desktop license, limiting aspects of the operating system
behavior, including the Windows Sockets API, and tunes the process scheduler to deliver a better desktop
experience. Users must obtain and install the “Microsoft Visual C++ Redistributable for Visual Studio 2022”,
x64 edition from https://visualstudio.microsoft.com/downloads/ (currently this is listed under Other Tools
and Frameworks, and provides support for Visual Studio 2015, 2017 and 2019 as well.) Install the x64
flavor, and observe the prerequisites noted for that package. Installing this package from Microsoft ensures
that this runtime is updated by the Windows Update service for security vulnerabilities within the Universal
C Runtime itself.

Note that VMware convenience packages prior to httpd 2.4.53 were built with Visual Studio 2017 or 2019.
This may cause issues for users who have compiled third-party modules. Users are advised to rebuild any
such modules before combining them with these newer packages. This package relies upon Windows
PowerShell to execute the httpd control scripts on Windows computers. All supported Windows versions
have PowerShell installed by default, but specific installations of Windows may not. To check whether your
version of Windows has PowerShell installed, go to Start > All Programs > Accessories and check for
Windows PowerShell in the list.

If Windows PowerShell is not already installed, install it as directed at; https://docs.microsoft.com/en-
us/powershell/scripting/setup/setup-reference.

If necessary, enable Windows PowerShell for script processing; script processing may be disabled by
default:

1. Start PowerShell from the Start Menu as an Administrator by opening Start > All Programs

Accessories > Windows PowerShell, then right-clicking on Windows PowerShell and selecting Run as
Administrator. A PowerShell window starts.

1. Check the current PowerShell setting by executing the following command: PS prompt> Get-
ExecutionPolicy.

2. If the command returns Restricted, it means that PowerShell is not yet enabled. Enable it to allow
local script processing at a minimum by executing the following command: PS prompt> Set-
ExecutionPolicy RemoteSigned

3. You can choose a different execution policy for your organization, and enable PowerShell using
Group and User policies. Typically, only the Administrator will be using the server control scripts, so
the RemoteSigned execution policy should be adequate in most cases.

Windows users must take note that extracting the zip file contents using the File Explorer from a remote
drive or volume, or from an untrusted “blocked” file will result in untrusted and non-executable files and
scripts. For the windows binary package, copy the .zip file to a local drive before using the File Explorer

Users can still build this package from source for the Ubuntu 16.04 operating system, see
https://github.com/vmware-tanzu/oss-httpd-build#readme, however, that OS is no longer
supported.

Tanzu Spring

42

extraction tool. If the .zip file was downloaded, then using the Windows File Explorer examine the .zip file
properties, and under Security below the Attributes item, check the Unblock check box to mark the zip file
contents as trusted. If the Security item is not present, the file is already unblocked.

In the command-line example given below, unzip is provided by info-zip, while mklink is an intrinsic
cmd.exe command which is not provided by PowerShell.

Installation

Create the desired install path, such as /opt/vmware/webserver or C:\VMware\WebServer, and unpack the
tar.bz2 or .zip file into that directory. From this root directory, then invoke the fixrootpath script to correct the
embedded paths to the current path, and finally create a symlink ‘httpd-2.4’ in parallel to the installed httpd
product path, once ready to adopt this installation as the “accepted” httpd-2.4 installation.

During an upgrade, restart each server instance individually and verify the correct operation of that
instance’s hosts. If there is a problem resulting from an upgrade, simply restore the symlink to the
previously installed httpd path, and restart the servers with the old version to avoid unnecessary
interruption. When correct operation is verified the older httpd version can be expunged.

Unix users (running as root); Windows users (in a Command window ‘Run as Administrator’);

Instance Creation

This distribution of Apache HTTP Server is parameterized to allow multiple instances to be created and
managed independently, without duplicating the binary files. The instance directory is typically named for a
primary server hostname and contains the instance-specific directories conf, htdocs, logs and ssl (for
certificates and keys).

Unix users (running as root):

$ mkdir -p /opt/vmware/webserver

$ cd /opt/vmware/webserver

$ tar -xjvf {path-to}/httpd-2.4.55-230207-{arch}.tar.bz2

$ httpd-2.4.55-230207/bin/fixrootpath.pl httpd-2.4.55-230207

$ ln -s httpd-2.4.55-230207 httpd-2.4

Windows users (in PowerShell 'Run as Administrator');

C:\> mkdir \VMware\WebServer

C:\> cd \VMware\WebServer

C:\[...]> unzip {path-to}\httpd-2.4.55-230207-windows-x64.zip

C:\[...]> powershell httpd-2.4.55-230207\bin\fixrootpath.ps1 httpd-2.4.55-230207

C:\[...]> mklink /d httpd-2.4 httpd-2.4.55-230207

Unix users (running as root);

$ cd /opt/vmware/webserver

$ httpd-2.4/bin/newserver.pl --server {hostname}

$ cd {hostname}

$ bin/httpdctl install

$ bin/httpdctl start

Modify the files in {hostname}/conf/ to customize the server behavior. Use the httpden

v script

in the bin directory of the instance to have access to the various tools shipped in th

e httpd-2.4

bin directory;

$. bin/httpdenv.sh

Tanzu Spring

43

Or on Windows:

PS C:\VMware\WebServer\example.com> bin\httpdenv.ps1

The httpdctl uninstall command will remove the service from automatic startup at boot time. Updating
Instances In general, no special action is required when upgrading between httpd-2.4.x releases, directives
should be backwards-compatible. Restarting the server with httpdctl should be sufficient. From time to time,
httpdctl itself is upgraded, and to update the instance with refreshed control scripts, it is best to uninstall
any system service associated with the instance, use the –update feature of newserver.ps, and finally re-
install the system service (with potentially a new service name.) Unix Users (running as root):

1. Stop and uninstall the old instance:

$ cd /opt/vmware/webserver

$ {instance}/bin/httpdctl stop

$ {instance}/bin/httpdctl uninstall

1. Update the script with new features plus any revised service names:

$ httpd-2.4/bin/newserver.pl --server={instance} --update

1. Install and start the service with the new name:

$ {instance}/bin/httpdctl install

$ {instance}/bin/httpdctl start

1. Repeat steps 1-3 for each service.

RELEASE-NOTES 2.4.63-20250218195700

Apache HTTP Built by VMware 2.4.63-20250218195700 Release Notes

What’s in the Release Notes

Package Description

Included Components

RHEL 7 Users

RHEL 8 Users

RHEL 9 Users

Ubuntu Users

Microsoft Windows Users

Installation

Instance Creation

Updating Instances

Package Description

Tanzu Spring

44

This package includes Apache HTTP Server (httpd), along with a number of frequently updated library
components (dependencies).

This package is structured to allow parallel installation of multiple releases of Apache HTTP Server and
related components. It contains one directory tree, labeled as 2.4.63-20250218195700 which represents the
current version of httpd and of all components bundled in the package as of the effective date, in this case,
all of the components reflect current releases as of the releases build date

Unlike many httpd distributions, the end user instance configuration, server content and logs are not
modified in this directory tree. See the section on Instance Creation for details of creating a server instance
with these user maintained files.

A tarball of the sources is provided alongside the binary release downloads, for ready reference.

Versions prior to 2.4.53 used the OpenSSL and PCRE-8.x legacy versions. As of httpd 2.4.53, OpenSSL
release 3.0 and PCRE2 release 10.x are used instead. If modules were also compiled to consume
OpenSSL or PCRE2 themselves, they must be rebuilt.

Downloading

Apache HTTP built by VMware is distributed as part of [Spring Enterprise Subscription])
[https://docs.vmware.com/en/Tanzu-Spring-Runtime/Commercial/Tanzu-Spring-Runtime/spring-enterprise-
subscription.html). An access token is required to download.

httpd-ubuntu-2.4.63-20250218195700.tar.bz2

httpd-windows-x64-2.4.63-20250218195700.zip

httpd-rhel-2.4.63-20250218195700.tar.bz2

httpd-sources-2.4.63-20250218195700.zip

release-notes-2.4.63-20250218195700.md

Included Components

The following components are included in this httpd-2.4.55-230207 build; those marked (*) are not compiled
on RHEL 7 and Ubuntu 18.04, but the OS Vendors’ distribution packages are used instead. Links to the
user change notes and vulnerability indexes are illustrated below. Packages updated since the previous
release httpd-2.4.54-220722 are identified in boldface. In cases where the project does not maintain a
reference to specific CVE’s in an easily web accessible format the https://www.cvedetails.com/vulnerability-
list/ database link is provided; this list is not endorsed as complete or comprehensive and is offered for
convenience only.

Apache HTTPS Server 2.4.63

http://www.apache.org/dist/httpd/CHANGES_2.4

http://httpd.apache.org/security/vulnerabilities_24.html

Apache APR library 1.7.5
http://www.apache.org/dist/apr/CHANGES-APR-1.7

Apache APR-iconvlibrary 1.2.2

http://www.apache.org/dist/apr/CHANGES-APR-ICONV-1.2

Tanzu Spring

45

https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-ubuntu/2.4.63-20250218195700/httpd-ubuntu-2.4.63-20250218195700.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-windows-x64/2.4.63-20250218195700/httpd-windows-x86-2.4.63-20250218195700.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-rhel/2.4.63-20250218195700/httpd-rhel-2.4.63-20250218195700.tar.bz2
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/httpd-sources-ubuntu/2.4.63-20250218195700/httpd-sources-ubuntu-2.4.63-20250218195700.zip
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/httpd/release-notes/2.4.63-20250218195700/release-notes-2.4.63-20250218195700.md

Apache APR-utillibrary 1.6.3

http://www.apache.org/dist/apr/CHANGES-APR-UTIL-1.6

brotli compression library 1.0.9
https://github.com/google/brotli/releases

Curl 8.11.1

https://curl.haxx.se/changes.html https://curl.haxx.se/docs/security.html

expat 2.6.4

https://github.com/libexpat/libexpat/blob/master/expat/Changes

Jansson 2.14
https://jansson.readthedocs.io/en/stable/changes.html

libxml 2.13.6

https://www.cvedetails.com/vulnerability-list/vendor_id-1962/product_id-3311/Xmlsoft-
Libxml2.html

http://www.xmlsoft.org/news.html (out of date)

Lua language 5.4.7

https://www.cvedetails.com/vulnerability-list/vendor_id-13641/product_id-28436/LUA-
LUA.html

https://www.lua.org/bugs.html

nghttp2 library 1.64.0
https://github.com/nghttp2/nghttp2/releases

OpenSSL library openssl-3.4.1

https://www.openssl.org/news/vulnerabilities.html

https://www.openssl.org/news/changelog.html

PCRE2 library 10.45

https://www.cvedetails.com/vulnerability-list/vendor_id-3265/product_id-33513/Pcre-
cre2.html

https://www.pcre.org/changelog.txt

Zlib compression librar 1.3.1
https://www.cvedetails.com/vulnerability-list/vendor_id-72/product_id-1820/GNU-Zlib.html

https://zlib.net/ChangeLog.txt

RHEL 7 Users

The RHEL 7 package requires several commonly installed packages to be available, these may be
provisioned with the following command;

$ yum install expat jansson libuuid libxml2 lua pcre2 zlib

Please note the addition of the jansson package to this list since the 2.4.29-171109 release, and the change
to pcre2 since the 2.4.51-211007 release. In order to use the provided apxs utility, additional packages are

Tanzu Spring

46

required as indicated at the https://github.com/vmware-tanzu/ oss-httpd-build README page.

RHEL 8 Users

The RHEL 7 package is compatible with RHEL 8 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib

Please note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt
may go by the package designation libxcrypt-compat instead. In order to use the provided apxs utility,
additional packages are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build
README page.

RHEL 9 Users

The RHEL 7 package is compatible with RHEL 9 and Fedora 30+, and requires some less commonly
installed packages to be available. These may all be provisioned with the following command;

$ dnf install expat jansson libuuid libxcrypt libxml2 pcre2 zlib libxcrypt-compat

Please note the change to pcre2 since the 2.4.51-211007 release. On some later flavors of linux, libxcrypt
may go by the package designation libxcrypt-compat instead. In order to use the provided apxs utility,
additional packages are required as indicated at the https:// github.com/vmware-tanzu/oss-httpd-build
README page.

Ubuntu 20.04 and 22.04 Users

The Ubuntu package requires several commonly installed packages to be available, these may be
provisioned with the following command;

$ apt-get -y install libexpat1 libjansson4 liblua5.3-0 libpcre2-8-0 libxml2 zlib1g bzi

p2

Please note the addition of the libjansson4 package and corrected liblua5.3-0 and libxml2 package names
to this list since the 2.4.29-171109 release, and the change to libpcre2-8-0 since the 2.4.51-211007 release.
In order to use the provided apxs utility, additional packages are required as indicated at the
https://github.com/vmware-tanzu/oss-httpd-build README page.

NOTICE: Users may still build this package from source for the Ubuntu 16.04 operating system, see
https://github.com/vmware-tanzu/oss-httpd-build#readme however that OS is no longer supported.

Microsoft Windows Users

This package is built using Visual C++ 19 and C Runtime version 14, components of Microsoft Visual
Studio 2022. Windows Server 2022 and Windows Server 2019 are both suitable for deployment. Windows
10 Desktop and Windows 11 Desktop are suitable for developer evaluation but are not suitable for server
deployment, as Microsoft restricts the Windows Desktop license, limiting aspects of the operating system
behavior including the Windows Sockets API, and tunes the process scheduler to deliver a better desktop

Tanzu Spring

47

experience. Users must obtain and install the “Microsoft Visual C++ Redistributable for Visual Studio 2022”,
x64 edition; from https://visualstudio.microsoft.com/downloads/ (currently this is listed under Other Tools
and Frameworks, and provides support for Visual Studio 2015, 2017 and 2019 as well.) Install the x64
flavor, and observe the prerequisites noted for that package. Installing this package from Microsoft ensures
that this runtime is updated by the Windows Update service for security vulnerabilities within the Universal
C Runtime itself.

Note that VMware convenience packages prior to httpd 2.4.53 were built with Visual Studio 2017 or 2019.
This may cause issues for users who have compiled third-party modules. Users are advised to rebuild any
such modules before combining them with these newer packages. This package relies upon Windows
PowerShell to execute the httpd control scripts on Windows computers. All supported Windows versions
have PowerShell installed by default, but specific installations of Windows may not. To check whether your
version of Windows has PowerShell installed, go to Start > All Programs > Accessories and check for
Windows PowerShell in the list.

If Windows PowerShell is not already installed, install it as directed at; https://docs.microsoft.com/en-
us/powershell/scripting/setup/setup-reference

If necessary, enable Windows PowerShell for script processing; script processing may be disabled by
default; 1. Start PowerShell from the Start Menu as an Administrator by opening Start > All Programs

Accessories > Windows PowerShell, then right-clicking on Windows PowerShell and selecting Run as
Administrator. A PowerShell window starts.

1. Check the current PowerShell setting by executing the following command: PS prompt> Get-
ExecutionPolicy.

2. If the command returns Restricted, it means that PowerShell is not yet enabled. Enable it to allow
local script processing at a minimum by executing the following command: PS prompt> Set-
ExecutionPolicy RemoteSigned

3. You can choose a different execution policy for your organization if you want, as well as enable
PowerShell using Group and User policies. Typically, only the Administrator will be using the server
control scripts, so the RemoteSigned execution policy should be adequate in most cases.

Windows users must take note that extracting the zip file contents using the File Explorer from a remote
drive or volume, or from an untrusted “blocked” file will result in untrusted and non- executable files and
scripts. For the windows binary package, copy the .zip file to a local drive before using the File Explorer
extraction tool. If the .zip file was downloaded, then using the Windows File Explorer examine the .zip file
properties, and under ‘Security’ below the ‘Attributes’ item, check the “Unblock” checkbox to mark the zip
file contents as trusted. If the ‘Security’ item is not present, the file is already unblocked.

In the command-line example given below, unzip is provided by info-zip, while mklink is an intrinsic
cmd.exe command which is not provided by PowerShell.

Installation

Create the desired install path, such as /opt/vmware/webserver or C:\VMware\WebServer, and unpack the
tar.bz2 or .zip file into that directory. From this root directory, then invoke the fixrootpath script to correct the
embedded paths to the current path, and finally create a symlink ‘httpd-2.4’ in parallel to the installed httpd
product path, once ready to adopt this installation as the “accepted” httpd-2.4 installation. During an
upgrade, restart each server instance individually and verify the correct operation of that instance’s hosts. If

Tanzu Spring

48

there is a problem resulting from an upgrade, simply restore the symlink to the previously installed httpd
path, and restart the servers with the old version to avoid unnecessary interruption. When correct operation
is verified the older httpd version can be expunged.

Unix users (running as root); Windows users (in a Command window ‘Run as Administrator’);

Instance Creation

This distribution of Apache HTTP Server is parameterized to allow multiple instances to be created and
managed independently, without duplicating the binary files. The instance directory is typically named for a
primary server hostname and contains the instance-specific directories conf, htdocs, logs and ssl (for
certificates and keys). Unix users (running as root);

$ mkdir -p /opt/vmware/webserver

$ cd /opt/vmware/webserver

$ tar -xjvf {path-to}/httpd-2.4.55-230207-{arch}.tar.bz2

$ httpd-2.4.55-230207/bin/fixrootpath.pl httpd-2.4.55-230207

$ ln -s httpd-2.4.55-230207 httpd-2.4

Windows users (in PowerShell ‘Run as Administrator’);

C:\> mkdir \VMware\WebServer

C:\> cd \VMware\WebServer

C:\[...]> unzip {path-to}\httpd-2.4.55-230207-windows-x64.zip

C:\[...]> powershell httpd-2.4.55-230207\bin\fixrootpath.ps1 httpd-2.4.55-230207

C:\[...]> mklink /d httpd-2.4 httpd-2.4.55-230207

Unix users (running as root);

$ cd /opt/vmware/webserver

$ httpd-2.4/bin/newserver.pl --server {hostname}

$ cd {hostname}

$ bin/httpdctl install

$ bin/httpdctl start

Modify the files in {hostname}/conf/ to customize the server behavior. Use the httpdenv script in the bin
directory of the instance to have access to the various tools shipped in the httpd-2.4 bin directory;

$. bin/httpdenv.sh

Or on Windows;

PS C:\VMware\WebServer\example.com> bin\httpdenv.ps1

The httpdctl uninstall command will remove the service from automatic startup at boot time. Updating
Instances

In general, no special action is required when upgrading between httpd-2.4.x releases, directives should be
backwards-compatible. Restarting the server with httpdctl should be sufficient.

From time to time, httpdctl itself is upgraded, and to update the instance with refreshed control scripts, it is
best to uninstall any system service associated with the instance, use the –update feature of newserver.ps,
and finally re-install the system service (with potentially a new service name.)

Tanzu Spring

49

Unix Users (running as root);

1. Stop and uninstall the old instance:

$ cd /opt/vmware/webserver

$ {instance}/bin/httpdctl stop

$ {instance}/bin/httpdctl uninstall

1. Update the script with new features plus any revised service names:

$ httpd-2.4/bin/newserver.pl --server={instance} --update

1. Install and start the service with the new name:

$ {instance}/bin/httpdctl start

1. Repeat steps 1-3 for each service

Tanzu Spring

50

Spring Application Advisor

Spring Application Advisor is a set of tools for continuously and incrementally upgrading Spring application
dependencies, source code, and configuration across all your Git repositories. The Spring Application
Advisor CLI can be integrated into Continuous Integration pipelines to generate source code updates and
merge requests for specific upgrade steps.

Release Notes

What is Spring Application Advisor?

Spring Application Advisor Examples

Spring Application Advisor Architecture

Installing Spring Application Advisor

Running Spring Application Advisor CLI
Integrating Spring Application Advisor with CI/CD

Integrating with Spring Application Advisor in GitLab Enterprise

Integrating with Spring Application Advisor in GitHub Enterprise

Integrating with Spring Application Advisor in Jenkins

Integrating with Other SaaS CI/CD Tools

Spring Application Advisor How-to Guides

Custom upgrades using Spring Application Advisor

Running commercial recipes using OpenRewrite tools

Spring Boot 3.0.x Recipes

Spring Boot 3.1.x Recipes

Spring Boot 3.2.x Recipes

Spring Boot 3.3.x Recipes

Spring Boot 3.4.x Recipes

Spring Data 3.0.x Recipes

Spring Framework 6.0.x Recipes

Spring Framework 6.1.x Recipes

Spring Framework 6.2.x Recipes

Spring Security 5.8.x Recipes

Portfolio Analysis with the Tanzu Platform UI

Tanzu Spring

51

Troubleshooting Spring Application Advisor

Spring Application Advisor CLI Reference

Release Notes

These are the Release Notes for Spring Application Advisor.

1.1.2

Release Date: January 14, 2025

Adds support for creating upgrade plans for Spring Cloud Commons, Spring Cloud Config, and
Spring Cloud Netflix 4.2.x.

Adds support for creating upgrade plans for Spring Cloud Consul, Spring Cloud Kubernetes, Spring
Cloud Gateway, Spring Cloud Circuit Breaker, and Spring Cloud Bus.

Fixes connectivity issue when generating upgrade mappings using the experimental advisor
mapping command.

Enables publishing the build configuration with the Tanzu Platform UI (SaaS) using an OAuth
application.

Adds support for defining and downloading upgrade mappings from a Maven repository.

Adds support for creating upgrade plans for Spring Data Geode.

Fixes an issue with generating the build configuration when there is a CycloneDXBom task defined.

1.1.1

Release Date: December 20, 2024

Adds support for creating upgrade plans for Spring Boot 3.4.x.

Integrates Spring commercial recipes for Spring Framework 6.2.x.

Integrates Spring commercial recipes for Spring Data Commons 3.0.x.

Integrates Spring commercial recipes for Spring Data JPA 3.0.x.

Integrates Spring commercial recipes for Spring Data Redis 3.0.x.

Adds support for loading custom upgrade mappings from Git.

Adds the experimental advisor mapping build command, which is not exposed in the CLI.

Adds support for loading custom upgrade mappings from HTTP.

Adds hot-reloading of custom upgrade mappings.

Adds integration with the SaaS version of the Tanzu Platform UI.

Adds support for creating upgrade plans for Spring Data Redis and Jedis.

Adds support for creating upgrade plans for Spring LDAP.

Adds support for creating upgrade plans for Spring Data Commons.

Tanzu Spring

52

Adds support for creating upgrade plans for Spring Webflow.

Adds support for creating upgrade plans for Spring Hateoas.

Adds support for creating upgrade plans for Reactor Pool, Hibernate, RxJava, R2DBC projects,
Servicetalk, Redisson, AWS SDK, Tiles Autotag and Tiles Request.

Adds explanation of the blocking dependencies to continue with the upgrade.

Adds explanation of the possible target versions of a blocking project/dependency.

Fixes issues with resolving upgrade plans related with transitive dependencies.

Updates the environment variables to connect to Tanzu Platform UI.

1.1.0

Fixes issue with calculating Maven application modules when the build configuration is created.

Fixes issue with applying upgrade plans in Maven multi-modules

Fixes issue with resolving the upgrade plan when semantic versioning needs to be applied.

Fixes issue with resolving upgrade plans when custom upgrade plans are integrated.

Adds support for creating upgrade plans for Spring Data MongoDB.

Adds support for creating upgrade plans for Reactor, Reactor Netty and Reactor Netty Incubator.

Adds support for creating upgrade plans for Spring Cloud Services Starters, Spring Cloud Open
Service Broker, and Spring Cloud App Broker.

Adds support for creating upgrade plans for SpringFox

Upgrades the commercial recipes to integrate a complete Spring Boot 3.0.x recipe.

Adds Maven and Gradle debug messages when log files are generated.

Adds integration with the Tanzu Platform UI Self Managed via Tanzu Spring Server 1.0.x when
advisor build-config publish is executed.

1.0.4

Fixes issue with calculating the upgrade plan when Spring projects are consumed from different
dependencies

Integrates Spring commercial recipes for complete upgrades to Spring Framework 6.1.x

Integrates Spring commercial recipes for complete upgrades to SpringDoc 2.x

Fixes issue with regenerating changes that were introduced in previous upgrades of Spring Security
and Spring Boot 3.x

1.0.3

Adds a --force option in the upgrade-plan get/apply commands to preview the upgrade when there
are external dependencies that require Spring with no upgrade plans configured

Adds support for creating upgrade plans for Spring Cloud Netflix

Tanzu Spring

53

Allows configuration of upgrade plans for custom projects

Fixes issue with creating pull requests in GitHub.com

Fixes issue with resolving the submodules of a Maven repository

Adds support for creating upgrade plans for Pre-Liquibase, which uses Spring

1.0.2

Disables the remaining automatic additions of Governance Starter Spring Boot extension

Provides support for creating pull requests in GitHub Enterprise

Prevents running the Java 17 upgrade in Spring Boot 3.x projects

Adds support for creating upgrade plans for Spring Cloud Dataflow, Spring Data Commons, and
Spring Cloud App Broker

Adds support for creating upgrade plans for Spring Cloud Vault, Spring Cloud Task and Spring Vault

Adds support for creating upgrade plans for SpringDoc

Adds support for creating upgrade plans for Spring LDAP

Adds support for creating upgrade plans for Spring Data JPA 2.1.x

Fixes issue that occurred upgrading using Spring Data JPA 2.2.x

Upgrades managed dependencies for Spring Boot 3.x upgrades

Removes the list of executed recipes in the CLI output when there is an execution error during the
upgrade

1.0.1

Adds support for creating upgrade plans for Spring AI.

Adds support for creating upgrade plans for Resilience4j.

Adds support for creating upgrade plans for Cloud Foundry Java Client.

Adds support for creating upgrade plans for Spring Cloud Sleuth, Spring Cloud Alibaba, Spring
Cloud Stream.

Adds support for creating upgrade plans for Wavefront.

Adds tracing for the upgrade plan resolution in the Application Advisor CLI and server.

Fixes issue that occurred in the resolution of the upgrade plan when there are dependency cycles.

Disables the automatic addition of Governance Starter Spring Boot extension.

1.0.0

Integration with Spring Commercial recipes 1.0.0

Adds support for creating upgrade plans for Spring Retry.

Tanzu Spring

54

Adds support for creating upgrade plans for Spring Cloud, Spring Cloud Commons, and Spring
Cloud Connectors.

0.0.9

Adds support for creating upgrade plans for Cloud Foundry dependencies.

Adds support for upgrading Java versions just right before they are unsupported by Spring projects.

Fixes issue that occurred when upgrading Spring Boot applications using Governance Starter
Enterprise extension.

Adds support for creating upgrade plans for Spring Cloud Azure dependencies.

Includes several enhancements in the CLI messages.

0.0.8

Report of upgrade blockers.

Report of Maven and Gradle modules in the build-config file.

0.0.7

Integration with Spring commercial recipes for:

Spring Boot 3.1.x and 3.0.x

Spring Framework 6.0.x

Spring Security 5.8.x and 6.0.x

This means that you might need to configure/adapt your Maven settings. Refer to Running commercial
recipes using OpenRewrite tools for more details.

0.0.6

Updates for independent upgrade steps for Java and Gradle

What is Spring Application Advisor?

Spring Application Advisor is a VMware Tanzu Spring capability for continuously and incrementally
upgrading Spring dependencies in all your Git repositories.

Spring Application Advisor creates an upgrade pull request every time it detects that there is a new version
available for your Spring dependencies. These pull requests include changes in your build configuration and
Java files. With the new pull request, the corresponding developer team can easily review the code changes
and validate their correctness using their CI/CD engine.

How is Spring Application Advisor Different From Other
Solutions?

Spring Boot Migrator

Tanzu Spring

55

Spring Application Advisor is designed to replace Spring Boot Migrator. Spring Application Advisor supports
only the use case for upgrading your Spring applications, but provides higher upgrade coverage than Spring
Boot Migrator through use of Spring Commercial OpenRewrite recipes.

OpenRewrite

Spring Application Advisor runs on OpenRewrite, but there are some key differences.

1. Developers do not need to understand, search, and compose the recipes they need to upgrade their
Spring applications. Spring Application Advisor selects the recipes based on the project setup
without exposing any OpenRewrite contract.

2. Includes increased coverage for Spring project upgrade paths with Tanzu Spring-provided recipes.

3. Prevents invalid upgrades when Spring is consumed as a transitive dependency if there are no
associated OpenRewrite recipes. You will know when new recipes need to be created before
upgrading. For instance, if your organization has a custom Spring starter located in a different
repository than your application, Spring Application Advisor will not upgrade applications using that
starter if there are no recipes configured for it.

How Spring Application Advisor Works

Spring Application Advisor is a package that is composed of:

the native CLI

the Server (requires Java 17)

Both components are required.

The native CLI

This is a required component, and is currently available on Linux. This component is responsible for:

Generating the dependency tree and the build tool versions of a Git repository.

Running the refactors that apply the corresponding dependency version changes and Java API
upgrades, if needed, using the OpenRewrite recipes reported by the server.

Creating pull requests with the refactors. The CLI needs a Git access token with write access to
the repository.

It is assumed that the CLI is integrated into the CI/CD environment so that the Git repositories are
continuously analyzed and upgraded to the next version, if necessary. The CI/CD environment is already
configured to have access to internal Maven repositories, and to be able to resolve all the dependencies
and compile the sources.

Tanzu Spring

56

The Server

Requirements: Java 17 or higher

This is a required component. The Server is responsible for computing the upgrade plan, which is the list of
Spring dependencies or tools that must be upgraded together (using OpenRewrite recipes) to the next
release.

The Server also stores the dependency trees and build tool versions that have been inferred from each
build. By default, this information is stored in memory, but it can be stored in a SQL database.

Spring Application Advisor How-to Guides

You can use the following “How-to” topics to help you understand how to use Spring Application Advisor:

Upgrade Spring Boot from 2.7 to 3.4

Upgrade an Spring application that uses a custom Spring Boot Starter

Upgrade Spring Boot from 2.7 to 3.4

This is a classic exercise that upgrades a Spring Boot 2.7.x application with Java 8 to the latest version of
Spring Boot.

For this example, we are using a detached commit of an existing OSS repository called Spring Petclinic, a
basic application that uses Spring Boot.

The main branch of this repository is already up to date with the latest Spring Boot version. For the sake of
this example, we use a detached branch when the application was using Spring Boot 2.7.

git clone https://github.com/spring-projects/spring-petclinic

cd spring-petclinic

git branch advisor-demo 9ecdc1111e3da388a750ace41a125287d9620534

git checkout -f advisor-demo

The requirements for upgrading this repository are:

The Spring Application Advisor server component is ready to accept connections. See Install App
Advisor.

The CLI is available in your $PATH. See Run App Advisor.

Minimum requirement: Java SDK 17 or higher is available. Recommended: Java SDK 8, 11, and 17
are available.

You have a tool to manage multiple different Java versions. In this guide, we use sdkman, but you
can use any tool available.

The first step is to generate the build configuration of your application, which means to generate all the
information required to build it: the dependency tree (SBOM), the Java version, the build tool version, and
the application modules. Run the following command:

advisor build-config get

The result of the command is:

Tanzu Spring

57

https://sdkman.io/

Resolving the build configuration of spring-petclinic.

🏃 [1 / 3] Resolving dependencies with mvnw [00m 04s] ok

🏃 [2 / 3] Resolving JDK version [00m 02s] ok

🏃 [3 / 3] Resolving build tool [00m 01s] ok

🚀 The build-configuration has been generated in target/.advisor/build-config.json

The build configuration is a file required to resolve the upgrade plan of an application.

To resolve the upgrade plan, you must use the server. For convenience, VMware recommends that you
define the URL location of the server in the following environment variable.

export ADVISOR_SERVER=http://YOUR_ADVISOR_SERVER_LOCATION

Now you can run the following command:

advisor upgrade-plan get

This command prints the Spring Petclinic upgrade plan as follows:

🏃 Fetching and processing upgrade plan details [00m 01s] ok

 - Step 1:

 * Upgrade java from 8 to 11

 - Step 2:

 * Upgrade java from 11 to 17

 - Step 3:

 * Upgrade spring-data-jpa from 2.7.x to 3.0.x

 * Upgrade hibernate-orm from 5.6.x to 6.1.x

 * Upgrade spring-framework from 5.3.x to 6.0.x

 * Upgrade spring-boot from 2.7.x to 3.0.x

 * Upgrade spring-data-commons from 2.7.x to 3.0.x

 * Upgrade micrometer from 1.9.x to 1.10.x

 - Step 4:

 * Upgrade spring-data-jpa from 3.0.x to 3.1.x

 * Upgrade hibernate-orm from 6.1.x to 6.2.x

 * Upgrade spring-boot from 3.0.x to 3.1.x

 * Upgrade spring-data-commons from 3.0.x to 3.1.x

 * Upgrade micrometer from 1.10.x to 1.11.x

 - Step 5:

 * Upgrade spring-data-jpa from 3.1.x to 3.2.x

 * Upgrade hibernate-orm from 6.2.x to 6.4.x

 * Upgrade spring-framework from 6.0.x to 6.1.x

 * Upgrade spring-boot from 3.1.x to 3.2.x

 * Upgrade spring-data-commons from 3.1.x to 3.2.x

 * Upgrade micrometer from 1.11.x to 1.12.x

 - Step 6:

 * Upgrade spring-data-jpa from 3.2.x to 3.3.x

 * Upgrade hibernate-orm from 6.4.x to 6.5.x

 * Upgrade spring-boot from 3.2.x to 3.3.x

 * Upgrade spring-data-commons from 3.2.x to 3.3.x

 * Upgrade micrometer from 1.12.x to 1.13.x

 - Step 7:

 * Upgrade spring-data-jpa from 3.3.x to 3.4.x

 * Upgrade hibernate-orm from 6.5.x to 6.6.x

 * Upgrade spring-framework from 6.1.x to 6.2.x

 * Upgrade spring-boot from 3.3.x to 3.4.x

Tanzu Spring

58

 * Upgrade spring-data-commons from 3.3.x to 3.4.x

 * Upgrade micrometer from 1.13.x to 1.14.x

Next, apply the upgrade plan. Run the following command to apply the first step, which is Upgrade java
from 8 to 11. Before running the command, ensure that you have already configured the Spring Enterprise
Maven repository. See Guide for Artifact Repository Developers on your developer workstation, because
this step requires it.

advisor upgrade-plan apply

and you should see the following output:

🏃 [1 / 2] Fetching and processing upgrade plan details [00m 01s] ok

Projects to upgrade:

* java from 8 to 11

🔨 [2 / 2] Upgrading sources... [00m 25s] ok

👍 Successfully applied upgrade.

This produces a very small change. However, that is the value of the tool; it lets developers upgrade as
much as they can without imposing an upgrade to the latest version of Spring. To review the changes, run
the following command:

git diff

The output should look similar to the following:

diff --git a/pom.xml b/pom.xml

index d29355c..29b736e 100644

--- a/pom.xml

+++ b/pom.xml

@@ -15,7 +15,7 @@

 <properties>

 <!-- Generic properties -->

- <java.version>1.8</java.version>

+ <java.version>11</java.version>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

@@ -23,7 +23,7 @@

 <webjars-bootstrap.version>5.1.3</webjars-bootstrap.version>

 <webjars-font-awesome.version>4.7.0</webjars-font-awesome.version>

- <jacoco.version>0.8.7</jacoco.version>

+ <jacoco.version>0.8.12</jacoco.version>

 <nohttp-checkstyle.version>0.0.10</nohttp-checkstyle.version>

 <spring-format.version>0.0.31</spring-format.version>

As you can see, this upgrade is also upgrading Jacoco. This is because Jacoco traditionally advertises full
backwards compatibility for older Java versions.

Tanzu Spring

59

You can check that your application is still working using Java 11. Run the following commands:

sdk install java 11.0.25-tem

sdk use java 11.0.25-tem

./mvnw test

The end of the output should be:

[INFO]

[INFO] Results:

[INFO]

[WARNING] Tests run: 41, Failures: 0, Errors: 0, Skipped: 1

[INFO]

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 17.765 s

[INFO] Finished at: 2024-11-06T11:11:17+01:00

[INFO] --

To continue applying the steps, consider committing the changes produced at each step. Run the following
command to include the changes in the advisor-demo branch.

git add .

git commit -m "Upgrade java from 8 to 11"

To proceed with the upgrade to Java 17, repeat the same steps because the Java version has changed,
and therefore the build configuration must be regenerated:

advisor build-config get && advisor upgrade-plan apply

Now, after you run git diff, you see this change:

diff --git a/pom.xml b/pom.xml

index 29b736e..2a448a2 100644

--- a/pom.xml

+++ b/pom.xml

@@ -15,7 +15,7 @@

 <properties>

 <!-- Generic properties -->

- <java.version>11</java.version>

+ <java.version>17</java.version>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

@@ -126,7 +126,7 @@

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-checkstyle-plugin</artifactId>

- <version>3.1.2</version>

+ <version>3.6.0</version>

 <dependencies>

 <dependency>

 <groupId>com.puppycrawl.tools</groupId>

Tanzu Spring

60

The upgrade to Java 17 affects some build plug-ins, so maven-checkstyle-plugin upgrade is enforced
because old versions might have issues with the introduction of text blocks in Java 17.

Now, to evaluate the changes, continue with the following commands:

sdk install java 17.0.13-tem

sdk use java 17.0.13-tem

./mvnw test

You get the same result as in the previous upgrade, so you can commit the changes again.

git add .

git commit -m "Upgrade java from 11 to 17"

Now, you are ready to start upgrading to Spring Boot 3.0.x, which is an important upgrade because it
replaces the javax packages with Jakarta.

advisor build-config get && advisor upgrade-plan apply

In this case, after you run git status, you see the following changes:

On branch advisor-demo

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

modified: pom.xml

modified: src/main/java/org/springframework/samples/petclinic/model/BaseEnti

ty.java

modified: src/main/java/org/springframework/samples/petclinic/model/NamedEnt

ity.java

modified: src/main/java/org/springframework/samples/petclinic/model/Person.j

ava

modified: src/main/java/org/springframework/samples/petclinic/owner/Owner.ja

va

modified: src/main/java/org/springframework/samples/petclinic/owner/OwnerCon

troller.java

modified: src/main/java/org/springframework/samples/petclinic/owner/Pet.java

modified: src/main/java/org/springframework/samples/petclinic/owner/PetContr

oller.java

modified: src/main/java/org/springframework/samples/petclinic/owner/PetType.

java

modified: src/main/java/org/springframework/samples/petclinic/owner/Visit.ja

va

modified: src/main/java/org/springframework/samples/petclinic/owner/VisitCon

troller.java

modified: src/main/java/org/springframework/samples/petclinic/system/CrashCo

ntroller.java

modified: src/main/java/org/springframework/samples/petclinic/vet/Specialty.

java

modified: src/main/java/org/springframework/samples/petclinic/vet/Vet.java

modified: src/main/java/org/springframework/samples/petclinic/vet/VetControl

ler.java

modified: src/main/java/org/springframework/samples/petclinic/vet/Vets.java

modified: src/main/resources/application.properties

modified: src/test/java/org/springframework/samples/petclinic/model/Validato

rTests.java

modified: src/test/java/org/springframework/samples/petclinic/vet/VetTests.j

Tanzu Spring

61

ava

Untracked files:

 (use "git add <file>..." to include in what will be committed)

sql-error-codes.xml

src/main/resources/META-INF/

no changes added to commit (use "git add" and/or "git commit -a")

Interesting output is produced by looking at the changes introduced in
src/main/java/org/springframework/samples/petclinic/owner/OwnerController.java.

If you run:

git diff src/main/java/org/springframework/samples/petclinic/owner/OwnerController.jav

a

You see changes like these:

diff --git a/src/main/java/org/springframework/samples/petclinic/owner/OwnerControlle

r.java b/src/main/java/org/springframework/samples/petclinic/owner/OwnerController.jav

a

index 3c96327..7415003 100644

--- a/src/main/java/org/springframework/samples/petclinic/owner/OwnerController.java

+++ b/src/main/java/org/springframework/samples/petclinic/owner/OwnerController.java

@@ -17,7 +17,7 @@ package org.springframework.samples.petclinic.owner;

 import java.util.List;

 import java.util.Map;

-import javax.validation.Valid;

+import jakarta.validation.Valid;

 import org.springframework.data.domain.Page;

 import org.springframework.data.domain.PageRequest;

 import org.springframework.data.domain.Pageable;

@@ -60,14 +60,14 @@ class OwnerController {

 return ownerId == null ? new Owner() : this.owners.findById(ownerId);

 }

- @GetMapping("/owners/new")

+ @GetMapping({"/owners/new", "/owners/new/"})

 public String initCreationForm(Map<String, Object> model) {

 Owner owner = new Owner();

 model.put("owner", owner);

 return VIEWS_OWNER_CREATE_OR_UPDATE_FORM;

 }

- @PostMapping("/owners/new")

+ @PostMapping({"/owners/new", "/owners/new/"})

 public String processCreationForm(@Valid Owner owner, BindingResult result) {

 if (result.hasErrors()) {

 return VIEWS_OWNER_CREATE_OR_UPDATE_FORM;

@@ -77,13 +77,13 @@ class OwnerController {

 return "redirect:/owners/" + owner.getId();

As you can see, javax imports have been replaced by the equivalent in Jakarta. Also, Spring Framework 6
introduces a runtime breaking change. See The trailing slash matching configuration option has been
deprecated and its default value set to false.

Tanzu Spring

62

https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-6.0-Release-Notes#web-applications

With this Spring Framework change, GET /owners/new/ no longer matches by default and results in an
HTTP 404 error. To prevent this breaking change in your client applications, Spring Application Advisor is
designed to apply changes to ensure that existing applications behave as before and new code can
incrementally adopt the best practices.

This concludes the second step of the upgrade plan. By running the command advisor build-config get
&& advisor upgrade-plan apply for each of the remaining steps and following the same pattern of git
commands, the application is fully upgraded to the latest version of Spring Boot.

Upgrade an Spring application that uses a custom Spring
Boot Starter

This is a classic exercise that upgrades a Spring Boot application called acme-bookings-app with a
dependency called acme-boot-starter, which is a custom Spring Boot starter.

By using Spring Application Advisor, we will learn that:

Spring Application Advisor prevents invalid dependency changes in acme-bookings-app. There will
not be an upgrade plan for acme-bookings-app unless we publish the custom upgrade mappings
for acme-boot-starter.

By continuously publishing your custom upgrade mappings of a project like acme-boot-starter in
the Spring Application Advisor server, all the downstream dependencies can be automatically
upgraded.

The requirements for upgrading acme-bookings-app are:

Having the Spring Application Advisor server component ready to accept connections. See Install
App Advisor.

The CLI available in your $PATH. See Run App Advisor.

Notice that in this exercise, both the application (acme-bookings-app) and the starter
(acme-boot-starteracme-bookings-app do the following:

Upgrade the corresponding Java sources to consume the new Spring

APIs.

Upgrade the defined Spring dependencies that appears in the pom.xml

or the build.gradle file.

However, the recipe will NEVER bump the version of the acme-boot-starter

dependency because OpenRewrite has no knowledge about the following:

What dependencies (specially those that are internal) are using

Spring?

What versions of Spring are available in every version of every

dependency?

What is the correct version to upgrade the application given that

some dependencies have not been released for every version of

Spring?

Tanzu Spring

63

https://docs.spring.io/spring-boot/reference/features/developing-auto-configuration.html#features.developing-auto-configuration.custom-starter

Minimum requirement: Java SDK 17 or higher is available. Recommended: Java SDK 8, 11, and 17
are available.

A tool to manage multiple different Java versions. In this guide, we use sdkman, but you can use
any tool available.

To follow the example in this guide, clone acme-bookings-app and acme-boot-starter.

git clone https://github.com/rpau/acme-bookings-app

git clone https://github.com/rpau/acme-boot-starter

The next step is to build the artifacts of the different available versions of acme-boot-starter in your local
machine. To do this, run the following commands from the acme-boot-starter directory:

git checkout 1.0.0

./mvnw install

git checkout 2.0.0

./mvnw install

These commands build the com.acme.boot:acme-boot-starter:1.0.0 and com.acme.boot:acme-boot-
starter:2.0.0 artifacts and make them available into your local Maven repository, so they can be
resolved to build acme-bookings-app. In a real world scenario, this step is not required because these
artifacts are already available in a public or internal Maven repository.

Now, if you open the pom.xml of acme-bookings-app, you see the following dependency:

<dependency>

 <groupId>com.acme.boot</groupId>

 <artifactId>acme-boot-starter</artifactId>

 <version>1.0.0</version>

</dependency>

Verify that the dependency can be resolved by running the following command from the acme-booking-app
directory:

./mvnw package

This should produce an output that finishes with:

[INFO] --- spring-boot:2.7.3:repackage (repackage) @ acme-bookings-app ---

[INFO] Replacing main artifact with repackaged archive

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 2.384 s

[INFO] Finished at: 2025-01-15T12:54:24+01:00

[INFO] --

The acme-booking-app is using Spring Boot 2.7.x and we want to upgrade it to use the latest version of
Spring Boot using Spring Application Advisor.

Start by running the following commands from the acme-booking-app:

Tanzu Spring

64

https://sdkman.io/

advisor build-config get

advisor upgrade-plan get --url=$ADVISOR_SERVER

Notice that the last command prints this output:

The projects ["spring-framework", "spring-boot"] could not be included in the Upgrade

Plan because they are used as transitive dependencies for other projects, and no upgra

des are configured for them.

Please request your administrator to configure the projects of the following dependenc

ies:

- com.acme.boot:acme-boot-starter

uses:

- spring-framework

- spring-boot

blocking upgrades for:

- spring-boot

In order to learn more about publishing upgrade mappings, visit https://techdocs.broad

com.com/us/en/vmware-tanzu/spring/tanzu-spring/commercial/spring-tanzu/app-advisor-cus

tom-upgrades.html

No upgrade plans available - your project seems to be up to date.

Spring Application Advisor is notifying you that is not safe to upgrade this application until you provide
information about how to upgrade com.acme.boot:acme-boot-starter; because otherwise there might be
inconsistent Spring Boot versions between the one that is consumed by the acme-boot-starter and the
acme-booking-app.

To tell Spring Application Advisor how to upgrade acme-boot-starter from one version to another, you
need to provide a custom upgrade mapping file. This file can initially be filled manually, according to the
specification described, or using an experimental Spring Application Advisor command. To try the
experimental command, run the following from any empty directory.

advisor mapping build -r https://github.com/rpau/acme-boot-starter --offline --url=$AD

VISOR_SERVER

This command calculates the dependencies, the minimum Java version, and the submodules for each of
the acme-boot-starter Git tags that have been released.

Note that you must use the --offline option. This is because we want to enforce looking for the versions
available in the local Maven repository that were previously built. Otherwise, the command looks in the
remote Maven repository.

Sometimes, the tags available in the Git repository and the versions released might not be identical, so the
commands performs some pattern matching based on real projects.

After running the command, the output should be:

** Downloading project acme-boot-starter from: https://github.com/rpau/acme-boot-start

er

** Detecting available versions for project: acme-boot-starter

- Versions found: [1.0, 2.0]

Tanzu Spring

65

https://techdocs.broadcom.com/us/en/vmware-tanzu/spring/tanzu-spring/commercial/spring-tanzu/app-advisor-custom-upgrades.html

📁 Checking out version 1.0 for project acme-boot-starter:

** Successfully checked out tag '1.0.0'

** Generating Sbom for version 1.0 of project acme-boot-starter

- Re-detecting BuildTool

- Get Dependencies

- Get JavaRuntime

- Get Modules

 New mapping for version: 1.0

📁 Checking out version 2.0 for project acme-boot-starter:

** Successfully checked out tag '2.0.0'

** Generating Sbom for version 2.0 of project acme-boot-starter

- Re-detecting BuildTool

- Get Dependencies

- Get JavaRuntime

- Get Modules

 New mapping for version: 2.0

📝 Mapping file created at: .advisor/mappings/acme-boot-starter.json

🏁 PROCESS HAS FINISHED

If you look at the generated file, in the supportedGenerations properties, you will see the following
conditions:

acme-boot-starter:1.0.0 requires spring-boot:2.7.x

acme-boot-starter:2.0.0 requires spring-boot:3.0.x

You will also notice that there is an empty list for the recipes properties. By default, when no recipes are
defined, Spring Application Advisor dynamically generates the recipes to bump the artifact versions.

To instruct the Spring Application Advisor server to load this configuration, run the following command:

curl -X POST -H "Content-Type: application/json" -d @./.advisor/mappings/acme-boot-sta

rter.json $ADVISOR_SERVER/mapping/upload

This command sends the upgrade mappings to the Spring Application Advisor server component. The logs
contain this entry:

2025-01-15T13:50:29.037+01:00 INFO 30017 --- [Tanzu Spring Server] [omcat-handler-4]

c.v.t.s.a.s.mapping.MappingController : Custom Mapping file added, refreshing scope

The mappings are now available. If you request the upgrade plan for acme-booking-app (running advisor
upgrade-plan get), the output is:

🏃 Fetching and processing upgrade plan details [00m 01s] ok

 - Step 1:

 * Upgrade acme-boot-starter from 1.0.x to 2.0.x

 * Upgrade spring-framework from 5.3.x to 6.0.x

 * Upgrade spring-boot from 2.7.x to 3.0.x

 - Step 2:

 * Upgrade spring-boot from 3.0.x to 3.1.x

 - Step 3:

 * Upgrade spring-framework from 6.0.x to 6.1.x

 * Upgrade spring-boot from 3.1.x to 3.2.x

 - Step 4:

Tanzu Spring

66

 * Upgrade spring-boot from 3.2.x to 3.3.x

 - Step 5:

 * Upgrade spring-framework from 6.1.x to 6.2.x

 * Upgrade spring-boot from 3.3.x to 3.4.x

And after running the following command to see the changes to upgrade to Spring Boot 3.0.x:

advisor upgrade-plan apply --url=$ADVISOR_SERVER

git diff

You will see the dependency version change for spring-boot-starter-parent and acme-boot-starter
and other minor configuration changes required to upgrade this application to Spring Boot 3.0.x

diff --git a/pom.xml b/pom.xml

index a2c32d1..1e62a23 100644

--- a/pom.xml

+++ b/pom.xml

@@ -5,7 +5,7 @@

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

- <version>2.7.3</version>

+ <version>3.0.18</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

 <groupId>com.acme.boot</groupId>

@@ -37,7 +37,7 @@

 <dependency>

 <groupId>com.acme.boot</groupId>

 <artifactId>acme-boot-starter</artifactId>

- <version>1.0.0</version>

+ <version>2.0.0</version>

 </dependency>

 <dependency>

diff --git a/src/main/resources/application.properties b/src/main/resources/applicatio

n.properties

index 695b435..ea70a0f 100644

--- a/src/main/resources/application.properties

+++ b/src/main/resources/application.properties

@@ -1 +1,2 @@

+logging.pattern.dateformat=yyyy-MM-dd HH:mm:ss.SSS

 spring.application.name=acme-bookings-app

To understand how Spring Application Advisor works in all the scenarios, you can tune the acme-boot-
starter.json that you generated previously.

Open the acme-boot-starter.json file and replace the contents with the following text. These new
contents add a new artificial version 3.0.x that uses spring-boot:3.4.x.

Note that Spring Boot can be upgraded in all the steps without requiring upgrade of acme-
boot-starter. This is because Spring Application Advisor assumes semantic versioning,
which means that the Spring libraries, acme-boot-starter and acme-booking-app, should
be compatible.

Tanzu Spring

67

{

 "slug" : "acme-boot-starter",

 "coordinates" : [

 "com.acme.boot:acme-boot-starter"

],

 "repositoryUrl" : "https://github.gwd.broadcom.net/TNZ/acme-boot-starter",

 "rewrite" : {

 "1.0.x" : {

 "recipes" : [],

 "nextRewrite" : "2.0.x",

 "requirements" : {

 "supportedJavaVersions" : {

 "major" : 11,

 "minor" : 11

 },

 "supportedGenerations" : {

 "spring-boot" : "2.7.x"

 },

 "excludedArtifacts" : []

 }

 },

 "2.0.x" : {

 "recipes" : [],

 "nextRewrite" : "3.0.x",

 "requirements" : {

 "supportedJavaVersions" : {

 "major" : 17,

 "minor" : 17

 },

 "supportedGenerations" : {

 "spring-boot" : "3.0.x"

 },

 "excludedArtifacts" : []

 }

 },

 "3.0.x" : {

 "recipes" : [],

 "nextRewrite" : null,

 "requirements" : {

 "supportedJavaVersions" : {

 "major" : 17,

 "minor" : 17

 },

 "supportedGenerations" : {

 "spring-boot" : "3.4.x"

 },

 "excludedArtifacts" : []

 }

 }

 }

}

After you replace the contents, publish the new version to the server by running the curl command again.

curl -X POST -H "Content-Type: application/json" -d @./.advisor/mappings/acme-boot-sta

rter.json $ADVISOR_SERVER/mapping/upload

At this point, calculate the upgrade plan for acme-boot-starter again with the following commands:

Tanzu Spring

68

advisor build-config get

advisor upgrade plan get --url=$ADVISOR_SERVER

The following output is generated, which shows upgrades of the Spring Boot version from 3.0.x to 3.4.x
instead of having a step for each of the versions: 3.1.x, 3.2.x, 3.3.x, and 3.4.x. This is because Spring
Application Advisor is trying to align the higher number of projects together, because it means that their
versions have been tested together. In other words, Spring Application Advisor is trying to create coherence
between different project upgrades that might have been released with a different cadence.

🏃 Fetching and processing upgrade plan details [00m 01s] ok

 - Step 1:

 * Upgrade acme-boot-starter from 2.0.x to 3.0.x

 * Upgrade spring-framework from 6.0.x to 6.2.x

 * Upgrade spring-boot from 3.0.x to 3.4.x

Spring Application Advisor Architecture

To help you understand how the Spring Application Advisor works and how it interacts with your environment
and services, this topic:

Explains how Spring Application Advisor fits into your software delivery lifecycle (SDLC)

Provides an architecture diagram that shows how data flows through the Spring Application advisor
components and your system

How Spring Application Advisor fits into your software
delivery lifecycle (SDLC)

Spring Application Advisor is designed to create automatic pull requests that incrementally upgrade your
Spring applications. Pull requests are requests to review a new contribution to a repository. This is where
the information is shared among reviewers, and where multiple manual and automatic checks are executed
to prevent causing a broken application.

Spring Application Advisor creates a new branch in the Git repository every time a new upgrade opportunity
is detected, so engineering team members with write access in the repository can review and adapt the
requested changes before integrating them into the main branch.

Spring Application Advisor is designed to run in a CI/CD environment with a native CLI every time new code
changes have been integrated into the main branch, so there is continuous checking for available
incremental Spring upgrades.

To resolve whether there are incremental upgrades available (for example, from Spring Boot 2.6 to Spring
Boot 2.7), Spring Application Advisor checks for the current version of your dependencies and build tools.
To retrieve this information with accuracy and to prevent CI failures after an upgrade, Spring Application
Advisor must run in a development environment that always has access to your enterprise Maven
repositories. This environment is usually the CI/CD environment.

The described flow appears in this diagram:

Tanzu Spring

69

Architecture diagram

The graphic shown in this section is a high-level architecture diagram that shows the flow of data between
Spring Application Advisor and a typical customer environment. Arrows indicate communication between
components.

Spring Application Advisor has two main components:

The Server, which uses a set of mapping files to resolve the OpenRewrite recipes to be applied in
an upgrade plan.
The Server does not require any external Internet connectivity or storage.

The Native CLI, which requests upgrade plans to the server and runs the OpenRewrite recipes
associated to a plan using the classic Maven and Gradle plugins.
The Native CLI needs connection to the server and the preferred artifact manager tool (Nexus or
Artifactory, for example) that is able to resolve the artifacts that contain the recipes returned by the
server.

Spring Application Advisor upgrades the source code running OpenRewrite recipes from the CLI, so no
source code is transferred from the CLI location to the server. The Server resolves which OpenRewrite
recipes need to be executed, but the artifacts in which those recipes are stored are downloaded from the
Maven repositories that you have configured in your environment.

For more information:

To install the server, see How to install Spring Application Advisor.

Tanzu Spring

70

To connect the CLI to the server, see How to run the CLI.

To understand how to integrate the Maven repository into your environment, see Spring Enterprise
Subscription for Artifact Repository Administrators. Spring Application Advisor executes commercial
recipes that are available in the Spring Commercial repository.

Installing Spring Application Advisor

This topic provides the steps for installing Spring Application Advisor.

Download and Start the Spring Application Advisor Server

The server component of Spring Application Advisor requires Java 17 or higher.

To get the server component, download the following artifact from the Spring Enterprise Maven repository.

Run:

curl -L -H "Authorization: Bearer $ARTIFACTORY_TOKEN" -o spring-server.jar -X GET http

s://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/spring/tanzu-

spring-server/1.1.2/tanzu-spring-server-1.1.2.jar

After the server is downloaded and renamed, you can start the server by running the following command,
which by default, will start the service listening on port 8080:

java -jar -Dserver.port=9003 spring-server.jar

After the process starts, you can check the status in http://localhost:9003/actuator/health.

This solution does not require Internet connectivity.

Running Spring Application Advisor CLI

The Spring Application Advisor CLI is a native CLI that supports the following commands:

build-config

upgrade-plan

For information about syncing your internal repository with the Spring Enterprise Maven
repository, see Spring Enterprise Subscription.

If you need to expose the endpoints in a particular route, you can run the server with the
property spring.advisor.server.prefix set to a specific path.
Remember to include this path as part of the server URL (referenced in this documentation
as ADVISOR_SERVER) when executing the Spring Application Advisor CLI.

java -jar spring-server.jar --spring.advisor.server.prefix="/api/adviso

r"

Tanzu Spring

71

Usage: advisor [COMMAND]

Spring Application Advisor CLI

Commands:

 build-config Project build dependencies and tools

 upgrade-plan Retrieves or applies upgrade plan(s) to project

Download the CLI

The CLI is currently available only for Linux and MacOs.

To download the CLI, run:

For Linux:

curl -L -H "Authorization: Bearer $ARTIFACTORY_TOKEN" -o advisor-cli.tar -X GET http

s://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/spring/applic

ation-advisor-cli-linux/1.1.3/application-advisor-cli-linux-1.1.3.tar

tar -xf advisor-cli.tar --strip-components=1 --exclude=./META-INF

For MacOS Intel:

curl -L -H "Authorization: Bearer $ARTIFACTORY_TOKEN" -o advisor-cli.tar -X GET http

s://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/spring/applic

ation-advisor-cli-macos/1.1.3/application-advisor-cli-macos-1.1.3.tar

tar -xf advisor-cli.tar --strip-components=1 --exclude=./META-INF

For MacOS ARM64:

curl -L -H "Authorization: Bearer $ARTIFACTORY_TOKEN" -o advisor-cli.tar -X GET http

s://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/spring/applic

ation-advisor-cli-macos-arm64/1.1.3/application-advisor-cli-macos-arm64-1.1.3.tar

tar -xf advisor-cli.tar --strip-components=1 --exclude=./META-INF

Configure the Maven settings to download the commercial
recipes

For you to be able to upgrade your Spring Applications, the Application Advisor CLI must be able to
download artifacts from the Spring Maven Enterprise repository. Ensure that your Maven repositories are
configured correctly. See Running commercial recipes using OpenRewrite tools.

Produce a build configuration

A build configuration contains:

The dependency tree using the CycloneDX format

The Java version required to compile the sources

The build tool versions

To produce the build configuration, run:

advisor build-config get

Tanzu Spring

72

This command produces this output:

Resolving the build configuration of $path.

🏃 [1 / 3] Resolving dependencies with “maven/gradle command” [3m 2s] ok

🏃 [2 / 3] Resolving JDK version [4s]

🏃 [3 / 3] Resolving build tool [1s]

🚀 Build configuration generated at $path/.advisor/build-config.json

💔 Errors

- $repo failed with the following message:

The maven command failed. You can find the error in .advisor/errors/${error-id}.log

The build configuration is produced as a HSON file in an internal folder called .advisor. If the folder already
contains a build configuration, it will be overwritten.

Publish a build configuration

Use this command to publish the generated build configuration to the Spring Application Advisor server:

advisor build-config publish --url=${ADVISOR_SERVER}

Where ADVISOR-SERVER is the URL of the Server where the Application Advisor is installed.

Generate an upgrade plan

This command provides the step-by-step upgrade plan showing the Spring projects that need to be
upgraded, and to what versions.

advisor upgrade-plan get --url=${ADVISOR_SERVER}

Where ADVISOR-SERVER is the URL of the Server where the Application Advisor is installed.

The output looks something like this:

Fetching details for upgrade plan:

 - Step 1:

 * Upgrade Spring Boot from v2.6.1 to v2.7.x

 * Upgrade Spring Framework from v3.5.1 to v4.0.x

 - Step 2:

 * Upgrade Java from 8 to 11

 - Step 3:

 * Upgrade Spring Boot from v 2.7.1 to v3.0.x

Apply an upgrade plan from your local machine

The following command can upgrade the files locally on your machine. Then you can manually review them
to decide if you want to integrate Spring Application Advisor pull requests into your repository.

advisor upgrade-plan apply --url=${ADVISOR_SERVER}

Where ADVISOR-SERVER is the URL of the Server where the Application Advisor is installed.

Tanzu Spring

73

Spring Application Advisor preserves your coding style by making the minimum required changes in the
source files. However, if you are using a Maven or Gradle formatter like spring-javaformat for your
repository, add the --after-upgrade-cmd option to the advisor upgrade-plan apply command as
follows:

advisor upgrade-plan apply --url=${ADVISOR_SERVER} --after-upgrade-cmd=${MAVEN_OR_GRAD

LE_FORMATTER_TASK}

Where:

ADVISOR-SERVER is the URL of the Server where the Application Advisor is installed.

MAVEN_OR_GRADLE_FORMATTER_TASK is the Maven or Gradle formatting task.

For example, for spring-javaformat, use:

advisor upgrade-plan apply --url=$https://appadvisorserver.company.org --build-tool-ru

n-cmd=spring-javaformat:apply

Increasing memory limit

The Advisor CLI runs Gradle to get Build Configuration and apply recipes.

Gradle will run a separate process, daemon, to use the local configuration, depending on the project. The
Java VM used by the daemon limits memory to 512 MegaBytes by default. However, it can also provide
other default options.

When the target project to upgrade is large, it may be necessary to increase the default memory limit. For a
Gradle build, use org.gradle.vmargs.

For example, if you want to increase the memory limit to 1 GigaByte, run:

upgrade-plan apply --url <url>

--build-tool-jvm-args="-Dorg.gradle.jvmargs=-Xmx1g"

You can also change the Garbage Collector:

upgrade-plan apply --url <url>

--build-tool-jvm-args="-Dorg.gradle.jvmargs=-Xmx2g -XX:+UseParallelGC"

Enable continuous and incremental upgrades

To enable continuous and incremental upgrades with automatic pull requests:

1. If you are using GitLab Enterprise, GitHub Enterprise, or Jenkins, check that your pipelines are
executing the following command:

advisor upgrade-plan apply --push --from-yml --url=${ADVISOR_SERVER}

Where ADVISOR-SERVER is the URL of the Server where the Application Advisor is installed.

If not, integrate the following commands in your CI/CD pipeline:

Tanzu Spring

74

advisor build-config get

advisor build-config publish --url=${ADVISOR_SERVER}

advisor upgrade-plan apply --push --from-yml --url=${ADVISOR_SERVER}

Where ADVISOR-SERVER is the URL of the Server where the Application Advisor is installed.

2. Verify or create the GIT_TOKEN_FOR_PRS environment variable for your CI/CD build. The value
should be an access token with write access to the repository. Spring Application Advisor creates a
branch in the repository and a makes a new pull request against the branch.

3. Add a file named .spring-app-advisor.yml in the root directory of your repository with the
following contents:

enabled: true

Integrating Spring Application Advisor with CI/CD

These topics provide the steps for integrating Spring Application Advisor:

with GitLab Enterprise

with GitHub Enterprise

with Jenkins

with other SaaS CI/CD tools

Integrating with Spring Application Advisor in GitLab
Enterprise

This topic provides the steps for integrating Spring Application Advisor with your CI/CD pipelines in GitLab
Enterprise. It explains how to automatically integrate Spring Advisor after every build so that manual
changes are not required in every pipeline.

Step 1: Create a Custom GitLab Runner using GKE

There are multiple GitLab runners. This section explains the easiest way to integrate the Spring Application
Advisor CLI without having to edit the CI/CD pipelines: the Custom GitLab Runner Executor.

1. Create a new Virtual Machine in GKE: Compute Engine - Virtual Machines using an Ubuntu
image (available under the Boot disk section).

2. Edit the /etc/hosts to reference the GitLab Instance, if it’s not public:

<IP VALUE> gitlab.acme.com

3. Install the gitlab-runner utility for Ubuntu at /home/ folder:

This topic illustrates the required steps for Google Cloud, but it can be configured in any
environment.

Tanzu Spring

75

https://docs.gitlab.com/runner/executors/custom.html

cd /home/

curl -L "https://packages.gitlab.com/install/repositories/runner/gitlab-runner/

script.deb.sh" | sudo bash

sudo apt-get install gitlab-runner

4. Go to your GitLab instance as an administrator, and scroll to the Admin section at the bottom of
the screen. Create a new Runner at: CI/CD - Runners - New Instance Runner.

5. Click Linux and Run untagged jobs.

6. Get the token and register the runner with type custom and assign a name at the machine by
running:

sudo gitlab-runner register --url https://gitlab.acme.com --token MY_SECRET_TO

KEN --tls-ca-file gitlab.acme.com.crt

The certificate is available to export from the GitLab instance using any web browser at:
https://gitlab.acme.com. You can upload it to the machine by running:

gcloud compute scp LOCAL-DIRECTORY/gitlab.acme.com.crt root@"MACHINE-NAME":/hom

e/ --zone "us-central1-a" --project "app-advisor"

This generates a config file: /etc/gitlab-runner/config.toml.

Step 2: Invoke the Advisor CLI from the Custom GitLab
Runner

Now that you have created a custom GitLab runner, you need to configure it to run Spring App Advisor.

Follow these steps:

1. Edit the file generated in the previous step: /etc/gitlab-runner/config.toml. Use the following
content to configure the custom runner to execute a script.

concurrent = 1

check_interval = 0

shutdown_timeout = 0

[session_server]

session_timeout = 1800

[[runners]]

name = "instance-for-gitlab-runner"

url = "https://gitlab.acme.com"

token = "" # From GitLab Runner Instance config

tls-ca-file = "gitlab.acme.com.crt"

executor = "custom"

builds_dir = "/home/gitlab/builds"

cache_dir = "/home/gitlab/cache"

[runners.cache]

 MaxUploadedArchiveSize = 0

[runners.custom]

 run_exec = "/home/gitlab/advisor_exec.sh"

2. Create the folders to be used in the script:

Tanzu Spring

76

sudo mkdir /home/gitlab/builds

sudo chmod -R 777 /home/gitlab/builds

sudo mkdir /home/gitlab/cache

sudo chmod -R 777 /home/gitlab/cache

3. Add a Maven settings file to let Spring Application Advisor connect to the Spring Maven
repositories and run the commercial Spring recipes. The Maven settings file should be located in
/home/gitlab/.m2/settings.xml. Use the example provided in Running commercial recipes
using OpenRewrite tools

4. Copy and upload the next script (advisor_exec.sh) and the CLI binary (for Linux).

#!/bin/bash

readonly SCRIPT="$1"

readonly ACTION="$2"

cp /home/gitlab/.m2/settings.xml /root/.m2/settings.xml

export GIT_TOKEN_FOR_PRS="${GIT_TOKEN_FOR_PRS:-undefined}"

run_advisor() {

 echo "Project downloaded from git at: $CUSTOM_ENV_CI_PROJECT_DIR"

 echo "Running Spring Advisor CLI"

 /home/gitlab/advisor build-config get

 /home/gitlab/advisor build-config publish --url=${SERVER}

 /home/gitlab/advisor upgrade-plan apply --push --from-yml –-url=$SERVER

}

case "${ACTION}" in

"cleanup_file_variables")

run_advisor

;;

*)

. "$SCRIPT" "$ACTION"

;;

esac

5. Next, assign permissions:

gcloud compute scp LOCAL-DIRECTORY/advisor_exec.sh root@"MACHINE-NAME":/home/gi

tlab --zone "us-central1-a" --project "app-advisor"

gcloud compute scp LOCAL-DIRECTORY/advisor root@"MACHINE-NAME":/home/gitlab --z

one "us-central1-a" --project "app-advisor"

sudo chmod +x /home/gitlab/advisor_exec.sh

sudo chmod +x /home/gitlab/advisor

The script detects the phase of the custom runner execution and during the cleanup phase, it
executes the CLI.

6. Make the runner available for the GitLab instance:

sudo gitlab-runner run NAME-OF-THE-RUNNER

Tanzu Spring

77

Step 3: Check that your GitLab pipelines run Spring
Application Advisor at the end

1. Go to the GitLab Instance and run a job to check that everything works. This step assumes that
the repository containing the job already has a pipeline configured (.gitlab-ci.yml).

Integrating with Spring Application Advisor in GitHub
Enterprise

This topic provides the steps for integrating Spring Application Advisor with your CI/CD pipelines in GitHub
Enterprise.

You can automatically execute scripts on a self-hosted runner, either before a job runs, or after a job
finishes running. For instructions for creating a self-hosted runner, see the official GitHub documentation.

1. Modify the ACTIONS_RUNNER_HOOK_JOB_COMPLETED environment variable. There are two ways to
set this environment variable:

Add it to the operating system:

ACTIONS_RUNNER_HOOK_JOB_COMPLETED=/opt/runner/advisor_script.sh

Add it to a file named .env in the self-hosted runner application directory.

Create the advisor_script.sh file with the following contents:

#!/bin/bash

This script assumes that advisor CLI is in the $PATH

export GIT_TOKEN_FOR_PRS = **WRITE_GIT_ACCESS_TOKEN**

Check that the $HOME/.m2/settings is using the Spring Commercial reposi

tory

advisor build-config get

advisor build-config publish --url=${ADVISOR_SERVER}

advisor upgrade-plan apply --push --from-yml –-url=${ADVISOR_SERVER}

Ensure that the script has execution permissions.

chmod u+x /opt/runner/advisor_script.sh

Integrating with Spring Application Advisor in Jenkins

This topic provides the steps for integrating Spring Application Advisor with your CI/CD pipelines in Jenkins.

Before integrating Spring Application Advisor, check that Jenkins is configured to use the Spring
commercial repository in a shared Maven settings.xml file.

See the CloudBees official guide for details about how to provide a shared Maven settings file.

See Running commercial recipes using OpenRewrite tools for a working Maven settings.xml file to
connect to the Spring commercial repository.

Tanzu Spring

78

https://docs.github.com/en/enterprise-cloud@latest/actions/hosting-your-own-runners/managing-self-hosted-runners/running-scripts-before-or-after-a-job
https://docs.cloudbees.com/docs/cloudbees-ci-kb/latest/best-practices/best-practices-for-managing-maven-configurations-in-jenkins

Using Pipeline Templates

In Jenkins, Pipeline Templates help ensure that pipeline builds conform to organizational standards. Central
or platform teams can create their own standards using a Pipeline Template. For information about how
pipeline templates work, refer to the CloudBees documentation.

If you are already using CloudBees Pipeline Templates, you can adapt your existing template to
include the Spring Application Advisor CLI commands. For example:

pipeline {

 agent any

 environment {

 ADVISOR_SERVER = 'http://advisor.acme.com'

 GIT_TOKEN_FOR_PRS = credentials('advisor_git_token_for_prs')

 }

 stages {

 stage(my-stage) {

 steps {

 …

 }

 }

 …

 stage('spring-app-advisor') {

 steps {

 sh 'advisor build-config get'

 sh 'advisor build-config publish --url=$ADVISOR_SERVER'

 sh 'advisor upgrade-plan apply --push --from-yml –-url=$ADVISOR

_SERVER' --token=$GIT_TOKEN_FOR_PRS

 }

 }

}

}

If you are not using a CloudBees Pipeline Template, create a new Template, and then create a new
job for each of the repositories.

Integrating with Other SaaS CI/CD Tools

For SaaS tools, there is no way to embed a binary in all the builds without altering references in the CI/CD
pipeline. Because every CI/CD engine has its own syntax and vocabulary, this topic explains a script-based
approach that you must adapt for your solution.

Set up for script execution

The goal is to execute these CLI commands at the end of the build of the default or main branch:

...download and extract the advisor CLI…

export GIT_TOKEN_FOR_PRS = **WRITE_GIT_ACCESS_TOKEN**

advisor build-config get

advisor build-config publish --url=${ADVISOR_SERVER}

advisor upgrade-plan apply --push --from-yml –-url=${ADVISOR_SERVER}

Tanzu Spring

79

https://docs.cloudbees.com/docs/cloudbees-ci/latest/pipeline-templates-user-guide/

To set this up:

1. Configure the GIT_TOKEN_FOR_PRS environment variable. This must be an access token with write
access to the analyzed repository. This is to allow creation of automatic pull requests for upgrading
your Spring dependencies, if needed. Developers decide if they want to receive these pull requests
by adding a file named .spring-app-advisor.yml in the root directory. For more information, see
Enable continuous and incremental upgrades with automatic pull requests.

2. Replace ${ADVISOR_SERVER} with the full URL of your server. For example:
https://advisor.acme.com.

GitHub Actions

This section shows how to apply the script-based approach in the context of GitHub Actions. Note that
there is no concrete Java version requirement for running Application Advisor. It just needs to be consistent
with the project requirements.

name: Spring App Advisor Workflow

on:

 push:

 branches: ["main"]

jobs:

 build:

 runs-on: ubuntu-latest

 permissions:

 contents: read

 steps:

 - uses: actions/checkout@v4

 - name: Set up JDK

 uses: actions/setup-java@v4

 with:

 java-version: '17'

 distribution: 'temurin'

 - name: Generates Maven Settings

 uses: 's4u/maven-settings-action@v3.0.0'

 with:

 servers: '[{"id": "tanzu-spring-release", "username": "${{ secrets.BC_USER

}}", "password": "${{ secrets.$BC_PWD }}"}]'

 repositories: '[{"id":"tanzu-spring-release", "name":"Spring Enterprise Suppor

ted Releases","url":"https://packages.broadcom.com/artifactory/spring-enterprise","sna

pshots":{"enabled":false}}]'

 - name: Runs Spring Application Advisor

 env:

 GIT_TOKEN_FOR_PRS: ${{ secrets.advisor_git_token_for_prs }}

 ADVISOR_SERVER: ${{ secrets.advisor_server }}

 ARTIFACTORY_TOKEN: ${{ secrets.advisor_artifactory_token }}

 run: |

 curl -L -H "Authorization: Bearer $ARTIFACTORY_TOKEN" -o advisor-linux.ta

r -X GET https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/

spring/application-advisor-cli-linux/1.1.3/application-advisor-cli-linux-1.1.3.tar

 tar -xf advisor-linux.tar --strip-components=1 --exclude=./META-INF

 ./advisor build-config get

Tanzu Spring

80

 ./advisor build-config publish --url=$ADVISOR_SERVER

 ./advisor upgrade-plan apply --push --from-yml --url=$ADVISOR_SERVER --tok

en=$GIT_TOKEN_FOR_PRS

 - name: Get errors if exist

 if: ${{ hashFiles('.advisor/errors/') != '' }}

 run: |

 cat .advisor/errors/*

Custom upgrades using Spring Application Advisor

Most organizations have shared Java libraries and components across multiple Spring applications. If these
shared components use Spring libraries, Spring Application Advisor prevents, by default, upgrading these
applications to prevent the introduction of incompatible Spring versions in the classpath.

For example, if you have an application that depends on an internal library called acme-spring-commons
allocated in a different Git repository and that library uses spring-boot 2.7.x, this application cannot
upgrade to spring-boot 3.0.x until after that library has been upgraded and released with spring-boot
3.0.x.

To allow Spring applications to upgrade the Spring libraries when you upgrade your shared libraries, you
must configure the upgrade mappings for those shared libraries in the server.

Configure the upgrade plan for shared libraries

To start, create a custom-upgrades-mappings.json file. Copy and adapt the following example:

{

 "rewriteArtifacts": [

 {

 "coordinates": "com.acme.recipes:acme-spring-recipes:5.22.0",

 "minimalJavaVersion": "8"

 }

],

 "projects": [

 {

 "slug": "project-name",

 "coordinates": [

 "com.acme.project:project-module1",

 "com.acme.project:project-module2",

 ...

],

 "repositoryUrl": "https://github.com/acme/project-name",

 "rewrite": {

 "1.0.x": {

 "recipes": [

 {

 "name": "com.acme.recipes.project.UpgradeProject2_0"

 }

],

 "requirements": {

 "supportedJavaVersions": {

 "major": 21,

 "minor": 17

 }

 "supportedGenerations": {

Tanzu Spring

81

 "spring-boot": "3.0.x",

 "spring-security": "6.0.x",

 "spring-security-rsa": "1.0.x",

 "spring-integration": "6.0.x",

 "spring-retry": "2.0.x"

 }

 },

 "nextRewrite": "2.0.x"

 },

 "2.0.x": {

 "recipes": [],

 "requirements": {

 "supportedJavaVersions": {

 "major": 21,

 "minor": 17

 },

 "supportedGenerations": {

 "spring-boot": "3.2.x",

 "spring-security": "6.2.x",

 "spring-security-rsa": "1.1.x",

 "spring-integration": "6.2.x",

 "spring-retry": "2.0.x"

 }

 "excludedArtifacts": [

 "com.acme.project:project-module2"

]

 },

 "nextRewrite": null

 }

 }

 }

]

}

In this example, the configuration contains the following properties.

Property Function

rewriteArtifacts[*].coordinate

s

Required. The Maven identifier for the artifact that contains the OpenRewrite recipes.
If you need OSS OpenRewrite recipes, you do not need to define those coordinates.

rewriteArtifacts[*].minimalJav

aVersion

Required. The required minimalJavaVersion to run the recipes. Spring Application
advisor ignores the coordinates that cannot be applied in a repository that uses an
older Java version.

projects[*].slug Required. The unique project name. Usually corresponds to the name of the Git
repository that contains the shared libraries

projects[*].coordinates Required. The list of groupId:artifactId of the coordinates used to reference the
Java modules of the same Git repository

projects[*].repositoryUrl Optional. The URL pointing to the Git repository of the shared libraries.

projects[*].rewrite Required. Contains the requirements and the OpenRewrite recipes to upgrade from a
specific version, specified as a JSON object key, to the target version, specified as
nextRewrite.

Tanzu Spring

82

Property Function

projects[*].rewrite.$version.r

ecipes

Required. Array of OpenRewrite recipes that need to be executed simultaneously to
upgrade. If the array is empty, by default, the versions of the selected coordinates are
upgraded to the selected nextRewrite version.

projects[*].rewrite.$version.r

equirements.supportedJavaVersi

ons.major

Required. The major Java version required to run the coordinates in the selected
$version

projects[*].rewrite.$version.r

equirements.supportedJavaVersi

ons.minor

Required. The minor Java version required to run the coordinates in the selected
$version

projects[*].rewrite.$version.r

equirements.supportedGeneratio

ns

Required. The list of projects and versions that this project, under the selected
$version, is consuming

projects[*].rewrite.$version.r

equirements.excludedArtifacts

Optional. The list of coordinates that are no longer available in the selected $version.
An application cannot be upgraded if these are consumed.

Alternatively, especially because it can be a very tedious task to resolve all the requirements of each
version, you can start using the experimental command advisor mapping build that is currently available
for non-Spring projects whose libraries for each of the versions are available in Maven central or offline,
which means that those libraries are in the local folder ${HOME}/.m2/repository.

The command to generate the mappings for a repository is executed as follows:

advisor mapping build --repository=${REPO_URL} --url=${ADVISOR_SERVER} [--offline]

Update the server configuration

There are three options for updating the upgrade mappings in the server.

Providing upgrade mappings stored in the file system

This option is only useful if you want to test the upgrade plans and code changes introduced after adding
specific upgrade mappings without impacting developer teams.

To configure the server with specific upgrade mappings for your shared libraries/components:

1. Create a new environment variable called SPRING_ADVISOR_MAPPING_CUSTOM_0_FILEPATH with the
path of your mapping file relative to the location where the server has started. For example:

export SPRING_ADVISOR_MAPPING_CUSTOM_0_FILEPATH=relative/path/mapping.json

2. Restart the server to allow it to read the environment variable.

Providing upgrade mappings located in a Git repository

This option is useful for maintaining the upgrade mappings of OSS projects for which your organization
does not own the release process, but which your Spring applications are consuming. The server reloads
the mappings on a regular basis (daily, by default). So modifications in those Git repositories are reloaded
without requiring any explicit request.

Tanzu Spring

83

To configure the server with specific upgrade mappings located in a Git repository, follow the next steps:

1. Create these two environment variables for each of the Git repositories you want to configure. If
you have multiple Git repositories to configure, use the number that appears in the environment
variable name as an index for each of the mappings.

export SPRING_ADVISOR_MAPPING_CUSTOM_0_GIT_URI=https://github.com/org/repo.git

export SPRING_ADVISOR_MAPPING_CUSTOM_0_GIT_FILEPATH=.advisor/mappings/project.j

son

If the repository is private, a token can be specified.

export SPRING_ADVISOR_MAPPING_CUSTOM_0_GIT_TOKEN=${MY_GIT_TOKEN}

Optionally, a branch can be set.

export SPRING_ADVISOR_MAPPING_CUSTOM_0_GIT_BRANCH=notmain

2. If you want to modify the frequency at which the mappings are reloaded (the default is daily), set a
Cron expression in the SPRING_ADVISOR_MAPPING_COORDINATES_RELOAD_SCHEDULE environment
variable.

export SPRING_ADVISOR_MAPPING_COORDINATES_RELOAD_SCHEDULE=0 0 0 * * *

3. Restart the server to allow it to read the environment variable.

Providing upgrade mappings located in JFrog Artifactory

App Advisor supports storing and retrieving custom upgrade mappings from JFrog Artifactory generic
repositories. This approach enables centralized management of upgrade mappings across your
organization.

1. Organize your mapping files using the following structure, where each dependency version has its
own mapping file

acme-mappings

├── com.test.acme

│ └── weather-service

│ ├── 1.0.0

│ │ └── weather-service.json

│ └── 1.0.1

│ └── weather-service.json

└── com.test.acme

 └── booking-service

 └── 1.0.0

 └── booking-service.json

Create the following environment variables:

Mapping files must use SemVer versioning.

Tanzu Spring

84

export ARTIFACTORY_TOKEN=mysecrettoken

export ARTIFACTORY_URI=https://internal.packages.acme.com

export ARTIFACTORY_REPOSITORY=acme-mappings-generic-local

Use the following curl command to upload each mapping file:

curl -i -H "Authorization: Bearer $ARTIFACTORY_TOKEN" \

-XPUT "${ARTIFACTORY_URI}/${ARTIFACTORY_REPOSITORY}/acme-mappings/com.test.acm

e/weather-service/1.0.0/weather-service.json" \

-d @/myuser/acme-mappings/com.test.acme/weather-service/1.0.0/weather-service.j

son

Uploads can be tested by running:

curl -H "Authorization: Bearer $ARTIFACTORY_TOKEN" "${ARTIFACTORY_URI}/artifact

ory/api/storage/${ARTIFACTORY_REPOSITORY}/acme-mappings/com.test.acme/weather-s

ervice\?list\&deep\=1"

2. Set the following environment variables to enable custom mapping retrieval:

export SPRING_ADVISOR_MAPPING_CUSTOM_0_ARTIFACTORY_URI=https://internal.package

s.acme.com

export SPRING_ADVISOR_MAPPING_CUSTOM_0_ARTIFACTORY_TOKEN=${ARTIFACTORY_TOKEN}

export SPRING_ADVISOR_MAPPING_CUSTOM_0_ARTIFACTORY_REPOSITORY=acme-mappings-gen

eric-local

export SPRING_ADVISOR_MAPPING_CUSTOM_0_ARTIFACTORY_GAV=com.test.acme:weather-se

rvice

Providing upgrade mappings using HTTP

If you want to update the mappings without having to restart the sever, follow these steps:

1. Extract the specific project you want to update/add in a JSON file. The default upgrade mappings
for all versions of a project can be automatically generated with the experimental command
advisor mapping build.

advisor mapping build --repository=${REPO_URL} --url=${ADVISOR_SERVER} [--offli

ne]

Every time this command is executed, all of the upgrade mappings for each of the versions are
generated from scratch. The contents of the JSON file produced include only a project JSON
object. For example,

{

 "slug": "project-name",

 "coordinates": [

 "com.acme.project:project-module1",

 "com.acme.project:project-module2",

 ...

],

 "repositoryUrl": "https://github.com/acme/project-name",

 "rewrite": {

 "1.0.x": {

 "recipes": [

Tanzu Spring

85

],

 "requirements": {

 "supportedJavaVersions": {

 "major": 21,

 "minor": 17

 }

 "supportedGenerations": {

 "spring-boot": "3.0.x",

 "spring-security": "6.0.x",

 "spring-security-rsa": "1.0.x",

 "spring-integration": "6.0.x",

 "spring-retry": "2.0.x"

 }

 },

 "nextRewrite": null

 }

 }

}

2. To continuously upgrade these in your CI/CD process when a new release is available, VMware
recommends that you create a pull request with the generated contents and manually merge the
new additions. Consider testing the upgrade plans with the new configuration before integrating
them into production.

3. Optionally, add your custom OpenRewrite recipes for upgrading any of the identified versions, add
those in the corresponding versions in a different JSON file in a Git repository, and ask your
administrator to configure it in the server. However, if you are using basic Java or text recipes (for
example, to change a package, rename a class, and so on), this step is not required.

{

 "rewriteArtifacts": [

 {

 "coordinates": "com.acme.recipes:acme-spring-recipes:5.22.0",

 "minimalJavaVersion": "8"

 }

]

}

4. After you are happy with the mappings, send the mappings using HTTP, using the curl command,
for example.

curl -X POST -H "Content-Type: application/json" -d @./.advisor/mappings/my-pro

ject.json ${ADVISOR_SERVER}/mapping/upload

This command automatically stores the upgrade mappings in the file system of the server and is
reloaded everytime is restarted.

Running commercial recipes using OpenRewrite tools

OpenRewrite is an Open Source Software (OSS) application used for automatically refactoring source code.
Spring Application Advisor combines OSS recipes with commercial recipes built by the Spring team. These
commercial recipes are available only in the Spring Commercial repository. To check how to configure your
environment to run the commercial recipes, we recommend following one of the options described in Spring
Enterprise Subscription for Application Developers.

Tanzu Spring

86

https://docs.openrewrite.org/

This topic provides instructions for running the Spring Commercial OpenRewrite recipes to upgrade Spring
applications. The published recipes use org.openrewrite.recipe:rewrite-recipe-bom: 2.22.0.

There are several options for running OpenRewrite recipes. For simplicity, instructions are provided only for
the OpenRewrite Maven Plugin.

Upgrade to Spring Boot 3.0.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot30.UpgradeSpringBoot_3_0

The commercial recipes included are described in Recipes for Spring Boot 3.0.x.

To apply the Spring Boot release train, use the following command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot30.BootReleaseTrain_3_0

Upgrade to Spring Boot 3.1.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot31.UpgradeSpringBoot_3_1

The commercial recipes that are part of the upgrade are described in Recipes for Spring Boot 3.1.x

To apply the Spring Boot release train, use the following command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot31.BootReleaseTrain_3_1

Upgrade to Spring Boot 3.2.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot32.UpgradeSpringBoot_3_2

The commercial recipes that are part of the upgrade are described in Recipes for Spring Boot 3.2.x

To apply the Spring Boot release train, use the following command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

Tanzu Spring

87

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot32.BootReleaseTrain_3_2

Upgrade to Spring Boot 3.3.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot33.UpgradeSpringBoot_3_3

The commercial recipes that are part of the upgrade are described in Recipes for Spring Boot 3.3.x

To apply the Spring Boot release train, use the following command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot33.BootReleaseTrain_3_3

Upgrade to Spring Boot 3.4.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot34.UpgradeSpringBoot_3_4

The commercial recipes that are part of the upgrade are described in Recipes for Spring Boot 3.4.x

To apply the Spring Boot release train, use the following command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.boot34.BootReleaseTrain_3_4

Upgrade to Spring Security 5.8.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.security58.UpgradeSpringSecu

rity_5_8

The commercial recipes that are part of the upgrade are described in Recipes for Spring Security 5.8.x

Upgrade to Spring Security 6.0.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

Tanzu Spring

88

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.security60.UpgradeSpringSecu

rity_6_0

This recipe does not include additional commercial recipes.

Upgrade to Spring Security 6.1.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.security60.UpgradeSpringSecu

rity_6_1

This recipe does not include additional commercial recipes.

Upgrade to Spring Security 6.2.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.security60.UpgradeSpringSecu

rity_6_2

This recipe does not include additional commercial recipes.

Upgrade to Spring Security 6.3.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.security60.UpgradeSpringSecu

rity_6_3

This recipe does not include additional commercial recipes.

Upgrade to Spring Data 3.0.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.data30.UpgradeSpringData_3_0

The commercial recipes that are part of the upgrade are described in Recipes for Spring Data 3.0.x

Upgrade to Spring Framework 6.0.x

Use the following Maven command:

Tanzu Spring

89

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.framework60.UpgradeSpringFra

mework_6_0

The commercial recipes that are part of the upgrade are described in Recipes for Spring Framework 6.0.x

Upgrade to Spring Framework 6.1.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.framework61.UpgradeSpringFra

mework_6_1

The commercial recipes that are part of the upgrade are described in Recipes for Spring Framework 6.1.x

Upgrade to Spring Framework 6.2.x

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:spring-boot-3-upgrade-recipes:1.2.

3 -Drewrite.activeRecipes=com.vmware.tanzu.spring.recipes.framework62.UpgradeSpringFra

mework_6_2

The commercial recipes that are part of the upgrade are described in Recipes for Spring Framework 6.2.x

Migrate from JAXRS to Spring Boot 3.3

Use the following Maven command:

./mvnw -B org.openrewrite.maven:rewrite-maven-plugin:5.45.1:runNoFork -Drewrite.recipe

ArtifactCoordinates=com.vmware.tanzu.spring.recipes:javaee-boot-recipes:1.2.3 -Drewrit

e.activeRecipes=com.vmware.tanzu.spring.recipes.javaee.jaxrs.MigrateJaxRs

Design Principles

Commercial Spring Recipes follow a couple of design principles that are different from the OSS Spring
recipes to avoid duplicated changes and to avoid executing unnecessary recipes. These principles are:

Recipes do not perform steps to upgrade previous steps. For instance, the recipe to upgrade to
Spring Boot 3.1.x does not invoke the recipe to upgrade to Spring Boot 3.0.x. It assumes that the
user knows that the repository uses Spring Boot 3.0.x.

Recipes do not upgrade downstream projects. The Spring Framework recipes do not upgrade Spring
Security. VMware recommends using Spring Application Advisor if you don’t want to have to
remember what combination of recipes need to be executed in your repository.

Spring Boot 3.0.x Recipes

Tanzu Spring

90

ID Description

com.vmware.tanzu.spring.recipes.com

mon.generated.boot30.Upgrade_3_0_Al

lManagedDependencies

Upgrades all the managed dependencies associated to Spring Boot 3.0.x

com.vmware.tanzu.spring.recipes.boo

t30.ActuatorEndpointExposure

Enables all Actuator endpoints.

com.vmware.tanzu.spring.recipes.boo

t30.AddFormerLoggingDateProperty

Adds property to keep former date format in logback messages if a project has
a logback dependency.

com.vmware.tanzu.spring.recipes.boo

t30.MetricsMigration

Replaces the WebMvcMetricsFilter and MetricsRestTemplateCustomizer
classes with ServerHttpObservationFilter and
ObservationRestTemplateCustomizer respectively.

com.vmware.tanzu.spring.recipes.boo

t30.Saml2IdentityProviderToAssertin

gPartyYamlMigration

Replaces spring.security.saml2.relyingparty.registration.
{id}.identityprovider with
spring.security.saml2.relyingparty.registration.

{id}.assertingparty.

com.vmware.tanzu.spring.recipes.boo

t30.UpdateOverriddenR2dbcVersions

Replaces r2dbc-bom.version with actuals driver version.

com.vmware.tanzu.spring.recipes.boo

t30.DeprecatedPropertiesSpringBoot_

3_0

Adds inline comment to all properties deprecated in Spring Boot 3.0.x.

com.vmware.tanzu.spring.recipes.boo

t30.UpgradeSpringBoot_3_0

Main recipe that upgrades applications to the latest Spring Boot 3.0.x release.

Spring Boot 3.1.x Recipes

ID Description

com.vmware.tanzu.spring.recipes

.common.generated.boot31.Upgrad

e_3_1_AllManagedDependencies

Upgrades all the managed dependencies associated to Spring Boot 3.1.x

com.vmware.tanzu.spring.recipes

.boot31.UpdateBootMavenPluginWh

enMavenCompilerPropertiesAreNul

l

Replaces ${maven.compiler.source} and/or ${maven.compiler.target} if their
values are defined as either ${maven.compiler.release} or ${java.version}.

com.vmware.tanzu.spring.recipes

.boot31.UseBootMavenCompilerRel

ease

The spring-boot-starter-parent now uses maven.compiler.release to
configure the Java version instead of maven.compiler.source and
maven.compiler.target. If you use these in your build, migrate to
maven.compiler.release.

com.vmware.tanzu.spring.recipes

.boot31.AdaptGitCommitIdPluginF

orBoot_3_1

Replaces property git-commit-id-plugin.version with git-commit-id-maven-
plugin.version.

com.vmware.tanzu.spring.recipes

.boot31.IgnoreRegistrationFailu

reForBoot_3_1

Adds setIgnoreRegistrationFailure(true) when ServletRegistrationBean
and FilterRegistrationBean are registered.

Tanzu Spring

91

ID Description

com.vmware.tanzu.spring.recipes

.boot31.DisableHealthGroupMembe

rshipValidationForBoot_3_1

Disables Health Group Membership Validation for Spring Boot 3.1.x

com.vmware.tanzu.spring.recipes

.boot31.UpgradeSpringBoot_3_1

Main recipe that upgrades applications to the latest Spring Boot 3.1.x.

Spring Boot 3.2.x Recipes

ID Description

com.vmware.tanzu.spring.recipes.common.generated.boot32.U

pgrade_3_2_AllManagedDependencies

Upgrades all the managed dependencies
associated with Spring Boot 3.2.x

com.vmware.tanzu.spring.recipes.boot32.UpgradeSpringBoot_

3_2

Main recipe that upgrades applications to the latest
Spring Boot 3.2.x.

Spring Boot 3.3.x Recipes

ID Description

com.vmware.tanzu.spring.recipes.common.generated.boot33.U

pgrade_3_3_AllManagedDependencies

Upgrades all the managed dependencies
associated with Spring Boot 3.3.x

com.vmware.tanzu.spring.recipes.boot33.UpgradeSpringBoot_

3_3

Main recipe that upgrades applications to the latest
Spring Boot 3.3.x.

Spring Boot 3.4.x Recipes

ID Description

com.vmware.tanzu.spring.recipes.b

oot34.ConfigurationPropertiesVali

dation

Adds @Valid annotation to activate validation of nested properties to support the
lack of validation of nested configuration properties.

com.vmware.tanzu.spring.recipes.b

oot34.OltpTracingConnectionDetail

sUrl

Replaces OtlpTracingConnectionDetails.getUrl() method with the same
call, but adding
org.springframework.boot.actuate.autoconfigure.tracing.otlp.Trans

port.HTTP as a parameter.

com.vmware.tanzu.spring.recipes.b

oot34.ResourceBannerApplicationVe

rsion

Overwrites the ResourceBanner.getApplicationVersion(Class)
implementation of ResourceBanner subclasses by resolving the package
version.

com.vmware.tanzu.spring.recipes.b

oot34.DeprecatedPropertiesSpringB

oot_3_4

Either renames or adds inline comments to all properties removed or deprecated
in Spring Boot 3.4.

com.vmware.tanzu.spring.recipes.c

ommon.generated.boot34.Upgrade_3_

4_AllManagedDependencies

Upgrades all managed dependencies associated with Spring Boot 3.4.x

Tanzu Spring

92

ID Description

com.vmware.tanzu.spring.recipes.b

oot34.UpgradeSpringBoot_3_4

Main recipe that upgrades applications to the latest Spring Boot 3.4.x.

Spring Data 3.0.x Recipes

ID Description

com.vmware.tanzu.spring.recipes.dat

a30.AddCheckForNotExistingEntityByD

elete

Restores the Spring Data 2.7.x semantics by throwing an
org.springframework.dao.EmptyResultDataAccessException exception if
the user requests deletion of a non-existent entity.

com.vmware.tanzu.spring.recipes.dat

a30.ReplaceAuditingHandlerConstruct

ors

Adapts the arguments of the
org.springframework.data.auditing.AuditingHandler and
org.springframework.data.auditing.IsNewAwareAuditingHandler

constructors.

com.vmware.tanzu.spring.recipes.dat

a30.ReplaceInstantiationAwareProper

tyAccessorConstructor

Adapts the arguments of the
org.springframework.data.mapping.model.InstantiationAwareProper

tyAccessor constructor.

com.vmware.tanzu.spring.recipes.dat

a30.ReplaceKotlinReflectionMethods

Replaces deprecated Kotlin reflection methods in Spring Data Commons.

com.vmware.tanzu.spring.recipes.dat

a30.ReplaceLazyConstructor

Replaces the org.springframework.data.util.Lazy constructor with
Lazy.of().

com.vmware.tanzu.spring.recipes.dat

a30.SortingRepoWithoutCrudRepo

Adapts subtypes of
org.springframework.data.repository.PagingAndSortingRepository

to extend org.springframework.data.repository.CrudRepository

com.vmware.tanzu.spring.recipes.dat

a30.UpgradeSpringDataRedis_3_0

Renames the methods, types and constants according the new APIs for Spring
Data Redis 3.0.x.

com.vmware.tanzu.spring.recipes.dat

a30.UpgradeSpringData_3_0

Main recipe that upgrades applications to the latest Spring Data 3.0.x.

Spring Framework 6.0.x Recipes

.

ID Description

com.vmware.tanzu

.spring.recipes.

framework60.Asyn

cAnnotationMetho

dReturnType

Replaces methods to return Future or void for methods/types annotated with @Async.

com.vmware.tanzu

.spring.recipes.

framework60.Depr

ecateSerializati

onUtilsForFramew

ork

SerializationUtils.deserialize(...) is deprecated due to vulnerabilities. Typical use of it is to
clone an object via serialize/deserialize. Replaces this use with a SerializationUtils.clone(obj)
call.

Tanzu Spring

93

ID Description

com.vmware.tanzu

.spring.recipes.

framework60.Enab

leFullBeanIntros

pector

Enables java.beans.Introspector for Spring 5.x backward compatibility.

com.vmware.tanzu

.spring.recipes.

framework60.Lega

cySqlJdbcErrorCo

desTranslator

Adds Legacy SQL JDBC error codes translator XML file if spring-jdbc is on the classpath.

com.vmware.tanzu

.spring.recipes.

framework60.Migr

ateAddCallBackFr

omListenableFutu

re

Replaces ListenableFuture.addCallBack(ListenableFutureCallback) with
CompletableFuture.whenComplete(BiConsumer).

com.vmware.tanzu

.spring.recipes.

framework60.Migr

ateListenableFut

ureCallback

Replaces ListenableFutureCallback with BiConsumer.

com.vmware.tanzu

.spring.recipes.

framework60.Remo

veRequiredAnnota

tion

Removes @Required from setters and adds corresponding property assertions in
afterPropertySet() or @PostConstruct

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceAsyncTaskExec

utorCFPattern

Replaces supplyAsync(..) pattern with executor.submitCompletable(task) for
AsyncListenableTaskExecutor case.

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceCommonsMultip

artFile

Replaces CommonsMultipartFile with MultipartFile, and constructor invocation with the
generated MultipartFileDiskImpl.

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceCommonsMultip

artResolver

Replaces CommonsMultipartResolver with StandardServletMultipartResolver.

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceIntStatusCode

WithHttpStatusCo

de

Replaces int status code with HttpStatusCode.valueOf(int) in method invocations.

Tanzu Spring

94

ID Description

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceMergeAnnotati

onsEnclosingClas

sesStrategy

Replaces MergeAnnotations.TYPE_HIERARCHY_AND_ENCLOSING_CLASSES.

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceRawStatusInCl

ientHttpResponse

Replaces uses of ClientHttpResponse#getRawStatusCode().

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceRawStatusInCl

ientResponse

Replaces uses of ClientResponse#rawStatusCode().

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceReturnedHttpS

tatus

Replaces HttpStatus with HttpStatusCode for method invocations.

com.vmware.tanzu

.spring.recipes.

framework60.Http

MethodAsClassFor

Framework_6_0

Replaces EnumSet<> with Set and replaces switch blocks with if/else.

com.vmware.tanzu

.spring.recipes.

framework60.Http

StatusCode_6_0

Migrates APIs from HttpStatus to HttpStatusCode.

com.vmware.tanzu

.spring.recipes.

framework60.Remo

veOutdatedServle

tIntegrationsFor

Framework_6_0

Several outdated Servlet-based integrations have been dropped: e.g. Apache Commons FileUpload
(org.springframework.web.multipart.commons.CommonsMultipartResolver), Apache Tiles, and
FreeMarker JSP support in the corresponding org.springframework.web.servlet.view
subpackages. VMware recommends
org.springframework.web.multipart.support.StandardServletMultipartResolver for
multipart file uploads and regular FreeMarker template views if needed, and a general focus on REST-
oriented web architectures.

com.vmware.tanzu

.spring.recipes.

framework60.Rena

meTransactionExc

eptionClassesFor

Framework_6_0

Replaces org.springframework.dao.CannotSerializeTransactionException and
org.springframework.dao.DeadlockLoserDataAccessException with
org.springframework.dao.PessimisticLockingFailureException.

com.vmware.tanzu

.spring.recipes.

framework60.Repl

aceListenableFut

ureForFramework_

6_0

Replaces ListenableFuture.

Tanzu Spring

95

ID Description

com.vmware.tanzu

.spring.recipes.

framework60.Remo

veRequiredAnnota

tionForFramework

_6_0

Removes @Required from setter methods and adds corresponding property validation in
afterPropertySet() or @PostConstruct.

com.vmware.tanzu

.spring.recipes.

framework60.Upgr

adeSpringFramewo

rk_6_0

Main recipe that upgrades applications to the latest Spring Framework 6.0.x.

Spring Framework 6.1.x Recipes

ID Description

com.vmware.tanzu.spring.recipes.

framework61.AutowireCapableBeanF

actoryCreateBean

Replaces AutowireCapableBeanFactory.createBean(Class,int,boolean) by
AutowireCapableBeanFactory.createBean(Class) if the values of the 2nd
parameter is a 0 (AUTOWIRE_NO) or 3 (AUTOWIRE_CONSTRUCTOR).

com.vmware.tanzu.spring.recipes.

framework61.AutowireCapableBeanF

actoryCreateBean

Replaces AutowireCapableBeanFactory.createBean(Class,int,boolean) to
AutowireCapableBeanFactory.createBean(Class) if the values of the 2nd
parameter is a 0 (AUTOWIRE_NO) or 3 (AUTOWIRE_CONSTRUCTOR).

com.vmware.tanzu.spring.recipes.

framework61.AutowireCapableBeanF

actoryCreateBean

Replaces AutowireCapableBeanFactory.createBean(Class,int,boolean) to
AutowireCapableBeanFactory.createBean(Class) if the values of the 2nd
parameter is a 0 (AUTOWIRE_NO) or 3 (AUTOWIRE_CONSTRUCTOR).

com.vmware.tanzu.spring.recipes.

framework61.CommentOverClientHtt

pRequestFactory

Comments over new ClientHttpRequestFactory instances explaining buffering is
not available

com.vmware.tanzu.spring.recipes.

framework61.DeprecationsInAssert

Adds an String message to the deprecated methods from
org.springframework.util.Assert to use a non-deprecated API.

com.vmware.tanzu.spring.recipes.

framework61.MaybeRemoveValidated

AnnotationOnController

Removes @Validated at the controller class level in controllers whose method
parameters contain @Constraint annotations.

com.vmware.tanzu.spring.recipes.

framework61.NoStreamingDefaultPa

rtHttpMessageReader

Replaces DefaultPartHttpMessageReader.setStreaming(boolean) with
PartEventHttpMessageReader.

com.vmware.tanzu.spring.recipes.

framework61.RemoveSetThrowExcept

ionIfNoHandlerFoundSetToTrue

Sets the throwExceptionIfNoHandlerFound property of DispatcherHandler to
true by default.

com.vmware.tanzu.spring.recipes.

framework61.RenameTransactionSys

temException

Replaces TransactionSystemException to JpaSystemException in catch
blocks.

com.vmware.tanzu.spring.recipes.

framework61.TransactionEventList

enerUsage

Flags incorrect usage of @TransactionalEventListener.

Tanzu Spring

96

ID Description

com.vmware.tanzu.spring.recipes.

framework61.WrapWithBufferingCli

entHttpRequestFactory

Wraps ClientHttpRequestFactory in BufferingClientHttpRequestFactory.

com.vmware.tanzu.spring.recipes.

framework61.UpgradeSpringFramewo

rk_6_1

Main recipe that upgrades applications to the latest Spring Framework 6.1.x.

Spring Framework 6.2.x Recipes

ID Description

com.vmware.tanzu.spring.reci

pes.framework62.Base64UtilsR

emoved

Replaces org.springframework.util.Base64Utils with java.util.Base64.

com.vmware.tanzu.spring.reci

pes.framework62.BodySpecDepr

ecations

Replaces
org.springframework.test.web.reactive.server.WebTestClient.BodyContentS

pec.jsonPath(String, Object...) with
org.springframework.test.web.reactive.server.WebTestClient.BodyContentS

pec.jsonPath(String).

com.vmware.tanzu.spring.reci

pes.framework62.ClientHttpRe

sponseApiRemovals

Replaces
org.springframework.http.client.ClientHttpResponse.getRawStatusCode()

with
org.springframework.http.client.ClientHttpResponse.getStatusCode().valu

e()

com.vmware.tanzu.spring.reci

pes.framework62.HandlerResul

tApiRemovals

Replaces org.springframework.web.reactive.HandlerResult with the appropriate
expressions using getExceptionHandler and setExceptionHandler.

com.vmware.tanzu.spring.reci

pes.framework62.HttpHeadersD

eprecations

Replaces
org.springframework.http.HttpHeaders.writableHttpHeaders(HttpHeaders)

with new HttpHeaders(HttpHeaders)

com.vmware.tanzu.spring.reci

pes.framework62.HttpRequestV

aluesRemovedApi

Adapts the existing implementations of
org.springframework.web.service.invoker.HttpRequestValues.

com.vmware.tanzu.spring.reci

pes.framework62.HttpServiceP

roxyFactoryApiRemovals

Adapts the existing implementations of
org.springframework.web.service.invoker.HttpServiceProxyFactory

com.vmware.tanzu.spring.reci

pes.framework62.JsonPathExpe

ctationsHelperDeprecations

Replaces
org.springframework.test.util.JsonPathExpectationsHelper(String,

Object...) with
org.springframework.test.util.JsonPathExpectationsHelper(String).

com.vmware.tanzu.spring.reci

pes.framework62.MethodArgume

ntNotValidExceptionApiRemova

ls

Replaces usage of
org.springframework.web.bind.MethodArgumentNotValidException with the

equivalent BindErrorUtils expressions.

com.vmware.tanzu.spring.reci

pes.framework62.MockMvcReque

stDeprecation

Replaces MockMvcRequestBuilders.request(String, URI) with
MockMvcRequestBuilders.request(HttpMethod, URI).

Tanzu Spring

97

ID Description

com.vmware.tanzu.spring.reci

pes.framework62.SingletonBea

nRegistryDeprecations

Adds a TODO comment to replace the use of
org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.

getSingletonMutex()

com.vmware.tanzu.spring.reci

pes.framework62.UriComponent

sBuilderApiRemovals

Replaces
org.springframework.web.util.UriComponentsBuilder.parseForwardedFor(Htt

pRequest, InetSocketAddress) with the same method with additional parameters.

com.vmware.tanzu.spring.reci

pes.framework62.WebSocketMes

sageBrokerStatsDeprecations

Replaces
org.springframework.web.socket.config.WebSocketMessageBrokerStats with
the equivalent String expressions with a previous null validation.

com.vmware.tanzu.spring.reci

pes.framework62.UriComponent

sBuilderDeprecations

Replaces methods in org.springframework.web.util.UriComponentsBuilder with
the corresponding ForwardedHeaderUtils.adaptFromForwardedHeaders
expressions.

com.vmware.tanzu.spring.reci

pes.framework62.FreeMarkerVi

ewApiRemovals

Replaces
org.springframework.web.reactive.result.view.freemarker.getTemplate(Loc

ale) with lookupTemplate(locale).block().

com.vmware.tanzu.spring.reci

pes.framework62.ResourceHttp

MessageWriterApiRemovals

Replaces
org.springframework.http.codec.ResourceHttpMessageWriter.addHeaders(Rea

ctiveHttpOutputMessage, Resource, MediaType, Map) with
addDefaultHeaders(...).block()

com.vmware.tanzu.spring.reci

pes.framework62.WebClientAda

pterApiRemovals

Replaces
org.springframework.web.reactive.function.client.support.WebClientAdapt

er.forClient(WebClient) with
org.springframework.web.reactive.function.client.support.WebClientAdapt

er.create(WebClient).

com.vmware.tanzu.spring.reci

pes.framework62.ServerWebExc

hangeContextFilterApiRemoval

s

Replaces
org.springframework.web.filter.reactive.ServerWebExchangeContextFilter.

get(Context) with
org.springframework.web.filter.reactive.ServerWebExchangeContextFilter.

getExchange(getExchange).

com.vmware.tanzu.spring.reci

pes.framework62.HighCardinal

ityKeyNamesApiRemovals

Replaces HighCardinalityKeyNames.CLIENT_NAME with
LowCardinalityKeyNames.CLIENT_NAME.

com.vmware.tanzu.spring.reci

pes.framework62.UpgradeSprin

gFramework_6_2

Main recipe that upgrades applications to the latest Spring Framework 6.2.x.

Spring Security 5.8.x Recipes

ID Description

com.vmware.tanzu.spring.recipe

s.security58.UseNewRequestMatc

hers

Replaces the deprecated antMatchers, mvcMatchers, and regexMatchers methods
for the new requestMatchers methods. Refer to the Spring Security docs for more
information.

com.vmware.tanzu.spring.recipe

s.security58.UpgradeSpringSecu

rity_5_8

Main recipe that upgrades applications to the latest Spring Security 5.8.x.

Tanzu Spring

98

https://docs.spring.io/spring-security/reference/5.8/migration/servlet/config.html#use-new-requestmatchers

Portfolio Analysis with the Tanzu Platform UI

Spring Application Advisor can be integrated with the Tanzu Platform UI to allow you to understand the
support status and vulnerabilities of your Spring dependencies across all your Git repositories.

Connect the server to the Tanzu Platform UI

This section describes how to connect the Spring Application Advisor server component to Tanzu Platform
and how to publish the dependencies of your repositories.

Using Tanzu Platform UI SaaS

If you use the Tanzu Platform UI from https://platform.tanzu.broadcom.com, before starting the server
component of Spring Application Advisor, you must configure the following environment variables:

export TANZU_PLATFORM_INTEGRATION_ENABLED=true

export TANZU_PLATFORM_URL=https://data.platform.tanzu.broadcom.com

export TANZU_PLATFORM_CSP_URL=https://console.tanzu.broadcom.com

export TANZU_PLATFORM_ORG_ID=<YOUR_ORG_ID>

export TANZU_PLATFORM_APP_ID=<YOUR_APP_ID>

export TANZU_PLATFORM_APP_SECRET=<YOUR_APP_ID>

These are the functions of the environment variables:

TANZU_PLATFORM_INTEGRATION_ENABLED enables (when set to true) sending data from the server
component to Tanzu Platform.

TANZU_PLATFORM_URL is the URL location of your Tanzu Platform data instance. In this case, the
location of the public service must be https://data.platform.tanzu.broadcom.com.

TANZU_PLATFORM_CSP_URL is the URL location to generate a temporal access token for each
request. In this case, the location of the public service must be
https://console.tanzu.broadcom.com.

Tanzu Spring

99

TANZU_PLATFORM_ORG_ID is the UUID of the organization registered in the Tanzu Platform to which
your repositories belong; for example, ee04bfae-a665-4f20-a5b9-d8b043180252. To get the value
for your organization, click the top right menu where you see your user name, and click the copy
icon.

TANZU_PLATFORM_APP_ID is the OAuth application identifier of the added OAuth application used to
send the data.

TANZU_PLATFORM_APP_SECRET is the OAuth application secret of the added OAuth application used
to send the data.

TO learn how to create an OAuth application, see the Tanzu Platform documentation

Using Tanzu Platform UI Self-Managed

If you have your own installation of Tanzu Platform UI (self-managed), before starting the server component
of Spring Application Advisor, you must configure the following environment variables:

export TANZU_PLATFORM_INTEGRATION_ENABLED=true

export TANZU_PLATFORM_URL=<YOUR_TANZU_HUB_HOST>

export TANZU_PLATFORM_ORG_ID=<YOUR_ORG_ID>

export TANZU_PLATFORM_API_KEY=<API_KEY>

These are the functions of the environment variables:

TANZU_PLATFORM_INTEGRATION_ENABLED enables (when set to true) sending data from the server
component to Tanzu Platform.

TANZU_PLATFORM_URL is the URL location of your Tanzu Platform data instance. For example, the
location of the public service is https://data.platform.tanzu.broadcom.com.

TANZU_PLATFORM_ORG_ID is the UUID of the organization registered in the Tanzu Platform to which
your repositories belong; for example, ee04bfae-a665-4f20-a5b9-d8b043180252. To get the value
for your organization, click the top right menu where you see your user name, and click the copy
icon.

TANZU_PLATFORM_API_KEY is a key designed to connect third-party components to the Tanzu
platform. This key must be generated by the administrator of the Tanzu Platform. See the Tanzu
Platform documentation.

The following graphic shows how to copy the the organization ID from the Tanzu Platform UI.

Tanzu Spring

100

https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform/10-0/tnz-platform/apps-mgmt-how-to-connect-app-advisor.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform/10-0/tnz-platform/apps-mgmt-how-to-connect-app-advisor.html

After the server is configured, you can upload your Git repository build configuration. Use the following
command from the local folder where the Git repository is located:

advisor build-config publish

After the command is executed, you can see the support status of your Spring dependencies and the
associated vulnerabilities under Developer Tools > Repositories.

Troubleshooting Spring Application Advisor

This topic provides steps for troubleshooting common Spring Application Advisor problems.

Why does the apply command report that there are no
upgrade plans if there are outdated Spring dependencies?

This is usually the case when your application is using components/libraries from other repositories that are
using Spring. To find out what third-party components depend on Spring, and should be upgraded first, run:

advisor upgrade-plan get --url=http://localhost:9003

This will produce an output like this:

Tanzu Spring

101

The projects ["spring-framework"] could not be included in the Upgrade Plan because th

ey are used as transitive dependencies for other projects, and no upgrades are configu

red for them.

Ask your administrator to configure the projects of the following dependencies:

- org.flowable:flowable-engine-common uses: ["spring-framework"]

- org.flowable:flowable-engine uses: ["spring-framework"]

- org.flowable:flowable-event-registry-spring uses: ["spring-framework"]

- org.flowable:flowable-spring-common uses: ["spring-framework"]

- org.flowable:flowable-identitylink-service uses: ["spring-framework"]

...

No upgrade plans available - your project seems to be up to date.

If the components listed in the output belong to your repositories, you need to do the following:

1. Upgrade these components using Spring Application Advisor.

2. Create an OpenRewrite recipe to upgrade the components.

3. Define the mapping between the components and the recipes in Spring Application Advisor.

If the listed components do not belong to your repositories, contact Broadcom Software Support for help.

Why is my project unable to resolve the new Spring Maven
Plugin?

Spring Application Advisor is resolving the latest patch version of Spring projects in the configured Maven
repositories. If you have configured your Maven repositories to use Application Advisor, it will update the
Spring Maven Plugin, and in this case, it might include a commercial version that is available only in the
commercial repository.

To solve this problem, VMware recommends ensuring that
https://packages.broadcom.com/artifactory/spring-enterprise is accessible as a
pluginRepository in your Maven settings file; that is, in $HOME/.m2/settings.xml.

See Running commercial recipes using OpenRewrite tools for a detailed example.

Why is Spring Application Advisor unable to resolve the
bom.json file?

If the command advisor build-config get is failing with the following message, this is usually because
you have a conflicting configuration for the CycloneDX plug-in and the output directory for bom.json file is
not in the default location.

java.io.UncheckedIOException: Could not read file: YOUR_REPO_DIR/build/reports/bom.jso

n

Spring Application Advisor expects to find the file in:

For Maven, target/classes/META-INF/sbom

For Gradle, build/reports

To resolve the problem, replace the output directory with the default value for your system, or move the file.

Tanzu Spring

102

https://support.broadcom.com/group/ecx/software-contact-support
https://docs.spring.io/spring-boot/maven-plugin/index.html

Why am I seeing the “Blocked mirror for repositories” error
when applying the upgrade plan?

If there are errors in the Maven settings (that is, $HOME/.m2/settings.xml) used to download the Spring
commercial recipes, the advisor upgrade-plan apply command fails.

If you are using mirror repositories and you see the following error in the generated log file, this indicates
that there might be a rule defined in the global Maven settings file under mirrorOf that is blocking the
download. Refer to the Maven documentation for information about adapting the patterns.

[ERROR] Failed to execute goal org.openrewrite.maven:rewrite-maven-plugin:5.35.0:runNo

Fork (default-cli) on project demo: Failed to resolve requested artifacts transitive d

ependencies. Failed to collect dependencies at com.vmware.tanzu.spring.recipes:spring-

2-7-upgrade-recipes:jar:0.0.1-M4: Failed to read artifact descriptor for com.vmware.ta

nzu.spring.recipes:spring-2-7-upgrade-recipes:jar:0.0.1-M4: Could not transfer artifac

t com.vmware.tanzu.spring.recipes:spring-2-7-upgrade-recipes:pom:0.0.1-M4 from/to mave

n-default-http-blocker (http://0.0.0.0/): Blocked mirror for repositories: [spring-ent

erprise (http://20.15.236.104:8081/repository/spring-enterprise/, default, releases+sn

apshots)]

The following is is an example showing how to combine a proxy for Maven central and another for the
Spring Enterprise repository in a single Maven settings file:

<settings>

 <mirrors>

 <mirror>

 <id>internal-repository</id>

 <name>Maven Repository Manager running on repo.mycompany.com</name>

 <url>http://repo.mycompany.com/proxy</url>

 <mirrorOf>*,!spring-enterprise-subscription</mirrorOf>

 </mirror>

 <mirror>

 <id>mirror-spring-enterprise</id>

 <name>Mirror for Spring Enterprise</name>

 <url>http://repo.mycompany.com/spring-enterprise-repo</url>

 <mirrorOf>spring-enterprise-subscription</mirrorOf>

 </mirror>

 </mirrors>

 <activeProfiles>

 <activeProfile>org-profile</activeProfile>

 </activeProfiles>

 <profiles>

 <profile>

 <id>org-profile</id>

 <repositories>

 <repository>

 <id>spring-enterprise-subscription</id>

 <url>https://packages.broadcom.com/artifactory/spring-enterprise</url>

 </repository>

 <repository>

 <id>central</id>

 <url>http://central</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

Tanzu Spring

103

https://maven.apache.org/guides/mini/guide-mirror-settings.html

 <enabled>true</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

 </profiles>

 <servers>

 <server>

 <id>mirror-spring-enterprise</id>

 <username>USERNAME</username>

 <password>PWD<password>

 </server>

 <server>

 <id>internal-repository</id>

 <username>USERNAME</username>

 <password>PWD<password>

 </server>

 <server>

 <id>spring-enterprise-subscription</id>

 <username>USERNAME</username>

 <password>PWD<password>

 </server>

 </servers>

</settings>

Why can’t I see my repository in the Tanzu Platform?

If you are not seeing your repository in the Tanzu Platform UI, check the logs of the Spring Application
Advisor server component.

If you see an error like the one shown here, ensure that you have specified the correct value for the
TANZU_PLATFORM_URL environment variable. This needs to be the URL location of your Tanzu Platform data
instance (e.g., https://data.platform.tanzu.broadcom.com), not the the URL for Tanzu Platform UI.

org.springframework.web.client.HttpClientErrorException$BadRequest: 400 Bad Request: "

<?xml version='1.0' encoding='UTF-8'?><Error><Code>InvalidArgument</Code><Message>Inva

lid argument.</Message><Details>POST object expects Content-Type multipart/form-data</

Details></Error>"

Spring Application Advisor CLI Reference

This topic provides the list of CLI commands for Spring Application Advisor, along with supported options
and examples.

advisor build-config get

Generates the project build configuration compile-time dependencies and developer tools versions to
compile the Java sources of a repository.

Usage

advisor build-config get [-dh] [-b=<buildTool>] [-p=<path>]

Tanzu Spring

104

Generates the project build configuration, including compile-time dependencies and developer tools versions
to compile the Java sources of a repository.

The build-configuration file is named .advisor/build-config.json. This file is generated in the build
directory of the project:

For Maven: /target folder

For Gradle: /build folder

The build-configuration file is required to generate the upgrade plan of the repository.

Supported options

Options Function

-b, --build-tool=buildTool Selects the build tool used to resolve the project dependencies options:
mvnw, mvn, gradlew, gradle
(default: mvnw when there are multiple wrappers,
and mvn when there are no wrappers)

-d, --debug Prints out debug messages

-h, --help Prints the help for the command options

-p, --path=path Selects the root directory of the source code repository (default: current directory)

Examples

Example Result

advisor build-config get Generates the upgrade plan of the repository
when the root folder is in the current directory

advisor build-config get --path=/home/user/foo Generates the upgrade plan of the repository
when the root folder is in the /home/user/foo directory

advisor build-config publish

Publishes an existing build configuration of the source code repository into the Application Advisor server.

Usage

advisor build-config publish [-h] [-p=<path>] -u=<appAdvisorServerUrl>

Supported options

Options Function

-h, --help Prints the help for the command options

-p, --path=path Selects the root directory of the source code repository
(default: current directory)

Tanzu Spring

105

Options Function

-u, --url=appAdvisorServerUrl Selects the URL location of the Application Advisor server
(default: $ADVISOR_SERVER)

Examples

Example Result

advisor build-config publish --

url=http://localhost:9003

Publishes the build configuration associated with the repository located
in the current directory

advisor upgrade-plan get

Prints out the upgrade plan of the source code repository. An upgrade plan is the list of incremental Spring
related upgrades that can be performed in isolation.

Usage

advisor upgrade-plan get [-dfh] [-p=<path>] -u=<appAdvisorServerUrl>

Supported options

Options Function

-d, --debug Prints out debug messages

-h, --help Prints the help for the command options

-f, --force Forces the resolution of the upgrade plan excluding intermediate dependencies that belong to
unknown projects that use Spring.

-p, --path=path Selects the root directory of the source code repository (default: current directory)

-u, --
url=appAdvisorServerUrl

Selects the URL location of the Application Advisor server (default: $ADVISOR_SERVER)

Examples

Example Result

advisor upgrade-plan get --
url=http://localhost:9003

Prints the upgrade plan associated to the repository located in the current directory.

advisor upgrade-plan get --force
--url=http://localhost:9003

If there are unrecognized dependencies that use Spring, the upgrade plan is empty. The -
-force option resolves the upgrade plan by ignoring the unrecognized dependencies.

advisor upgrade-plan apply

Incrementally applies an upgrade plan to the source code repository. This command applies the first step of
the upgrade plan to the source code repository. You must first generate the build configuration using
advisor build-config get.

Tanzu Spring

106

If you want to preview a list of the next versions to upgrade your dependencies to, use advisor upgrade-
plan get.

Usage

advisor upgrade-plan apply [-dfh] [--from-yml] [--push]

 [--after-upgrade-cmd=<afterUpgradeRunCommand>] [-b=<buildTo

ol>]

 [--build-tool-jvm-args=<buildToolJvmArgs>] [-p=<path>]

 -u=<appAdvisorServerUrl>

Supported options

Options Function

--after-upgrade-
cmd=afterUpgradeRunCo
mmand

Executes a Maven or Gradle task after applying the upgrade plan

-b, --build-tool=buildTool Selects the build tool used to compile the sources options:
mvnw, mvn, gradlew, gradle
(default: mvnw when there are multiple wrappers,
and mvn when there are no wrappers)

--build-tool-jvm-
args=buildToolJvmArgs

Adds JVM arguments to pass into the build tool
(default: $BUILD_TOOL_JVM_ARGS)

-d, --debug Prints out debug messages

-f, --force Forces execution of full upgrade plan, including intermediate dependencies

--from-yml Enables the upgrade plan based on the contents of the .spring-app-advisor.yml file in the
selected path.

-h, --help Prints the help for the command options.

-p, --path=path Selects the root directory of the source code repository
(default: current directory)

--push Generates a pull request with the code upgrades. The environment variable
GIT_TOKEN_FOR_PRS is mandatory. It should contain the value of a token with permissions for
creating pull requests in the repository

--push Generates a pull request with the code upgrades. The environment variable
GIT_TOKEN_FOR_PRS is mandatory. It should contain the value of a token with permissions for
creating pull requests in the repository

-u, --
url=appAdvisorServerUrl

Selects the URL location of the Application Advisor
server (default: $ADVISOR_SERVER)

Examples

Example Result

advisor upgrade-plan
apply

Upgrades the repository in the current directory

Tanzu Spring

107

Example Result

advisor upgrade-plan
apply --push

Upgrades the repository and creates a pull request
with the changes

advisor upgrade-plan
apply --push --from-yml

Upgrades the repository and creates a pull request
with the changes if developers have explicitly enabled
automatic updates

advisor upgrade-plan
apply --force

Upgrades the repository in the current directory, ignoring version upgrades in intermediate
dependencies that use Spring. This can potentially break the build, but allows you to preview the
Spring-related changes.

advisor mapping build (Experimental)

Generates an upgrade mapping file for a project given its repository.

Usage

advisor mapping build [-dho] [-b=<buildTool>] [--build-tool-options=<buildToolOptions

>] [-c=<coordinate>]

 -r=<repositoryUrl> [-s=<slug>] [-t=<accessToken>] -u=<appAdvisor

ServerUrl>

Supported options

Options Function

-b, --build-tool=buildTool Selects the build tool used to compile the sources options:
mvnw, mvn, gradlew, gradle
(default: mvnw when there are multiple wrappers,
and mvn when there are no wrappers)

--build-tool-
options=buildToolOptions

Build arguments to pass to the build tool

-c, --coordinate=coordinate Main coordinate of the project to check available versions in the format
groupId:artifactId

-d, --debug Prints out debug messages

-f, --force Forces execution of full upgrade plan, including intermediate dependencies

-h, --help Prints the help for the command options

-o, --offline Resolves the versions offline, using the local Maven repository

-r, --repository-url=repositoryUrl Selects the Git repository URL of the project

-s, --slug=slug Name of the project to include into the mapping result

-t, --accessToken=accessToken Personal Access Token for the git repository if needed

-u, --url=appAdvisorServerUrl Selects the URL location of the Application Advisor
server (default: $ADVISOR_SERVER)

Examples

Tanzu Spring

108

Example Result

advisor mapping build -r='https://github.com/spring-cloud/spring-cloud-
cli'

Generates the upgrade mappings for spring-cloud-
cli

advisor

Base syntax, requires a command.

Usage

Usage: advisor [-v] [?] [COMMAND]

Supported options

COMMAND Explanation

build-config Generates or publishes build dependencies and tools

upgrade-
plan

Generates or applies upgrade plan(s) to upgrade the repository code base with the latest versions of Spring
components

--version Prints version of Spring Application Advisor CLI

Tanzu Spring

109

Enterprise Spring Boot Governance Starter

The Enterprise Spring Boot Governance Starter library enforces cipher and TLS security based on the
industry standard, and empowers Spring developers to auto-generate compliance and governance reporting
information for their applications.

Release Notes

Overview

Getting Started

Library Configuration Options

Governance Specifications

Preconfigured Governance Specifications

Custom Standards Support and Validation

Troubleshooting

Spring Boot Governance Starter Release Notes

These are the release notes for Enterprise Spring Boot Governance Starter.

v1.3.0

Release Date: September 12, 2024

BasicAuthenticationFilter now satisfies TNZSPEC-0013

Set status of expired CMVP certificates to “Historical”

v1.2.0

Release Date: August 7, 2024

Upgrades Bouncy Castle FIPS Java API dependencies to version 2.0

v1.1.0

The CMVP certificate for the 1.0.x line of the Bouncy Castle FIPS Java API (4616), used
in previous versions of the Enterprise Spring Boot Governance Starter, has an expiration
date of August 22nd, 2024. We strongly recommend upgrading to this version to ensure
you remain FIPS compliant.

Tanzu Spring

110

https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4616

Release Date: July 10, 2024

Add support for Spring Boot 3.3.0

Adds the following tags: PCIv4, DHS-4300B, CNSSI-1253J

Add TNZSPEC-0013 verify the presence of an authenticaiton filter

Add TNZSPEC-0014 to verify session cookies are secure

Add TNZSPEC-0015 to validate the max number of sessions

Add TNZSPEC-0016 to validate that passwords are not being encoded in Plain-text

Add TNZSPEC-0017 to check if input validation/sanitization is available

Add TNZSPEC-0018 to check for session timeout

Add TNZSPEC-0019 to check if the CSRF filter is present

Add TNZSPEC-0020 to check that the auditing actuator is activated

v1.0.0

Release Date: May 23, 2024

This is the first release.

Overview

The Enterprise Spring Boot Governance Starter library enforces cipher and TLS security based on the
industry standard, and empowers Spring developers to auto-generate compliance and governance reporting
information for their applications. This is done using the leading FIPS-approved security provider
BouncyCastle and auto-configurations to enforce their compliance stance. In addition, the library conducts
analysis at application startup, and provides a rich set of predefined regulatory compliance specification
tests, out of the box. The results are accessible through a custom Spring Boot actuator endpoint in JSON
format. This report can be easily consumed by clients to aggregate findings and generate targeted
presentations.

This library also provides support for adding custom governance specifications, so you can extend its
functionality beyond predefined compliance standards rules. After your custom governance specifications
are added, the library runs these validations against your application at startup. This feature allows you to
incorporate organization-specific regulations, industry guidelines, or proprietary standards into your
validation processes.

Minimum Requirements

Component Version

Java Virtual Machine 17+

Spring Boot 2.7.x+

Predefined Validations

Tanzu Spring

111

https://www.bouncycastle.org/fips-java/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#actuator.endpoints

Server TLS Validation

Protocols Ciphers RSA/EC Key Size

Tomcat Yes Yes Yes

Netty Yes Yes Yes

Client TLS Validation

Hostname Verification Encryption Validation

HTTPS *

RestTemplateBeans** Yes Yes

RestClientBeans** Yes Yes

Declarative RestClientBeans** Yes Yes

WebClientBeans Yes Yes

Declarative WebClientBeans Yes Yes

JDBC

MySQL Yes Yes

MariaDB Yes Yes

PostgreSQL Yes Yes

Authentication/Authorization

LDAP AuthenticationManager beans Yes Yes

*For more details about HTTPS, see https://docs.spring.io/spring-
framework/reference/integration/rest-clients.html.

**Supports the following HTTP request factories: SimpleHttpClient, Apache, JDK

OIDC Clients

Validates the usage of TLS on the OIDC Endpoints for the supplied providers

Endpoint TLS

Issuer Yes

Authorization Yes

Token Yes

User Info Yes

JWKS Yes

Getting Started

Tanzu Spring

112

https://docs.spring.io/spring-framework/reference/integration/rest-clients.html

This topic provides the prerequisites and instructions for running Enterprise Spring Boot Governance Starter
library with your app for the first time.

Prerequisites

Before adding the Spring Boot Governance Starter to your application, you must have access to it
in your project’s build. The recommended approach is to sync the Spring Enterprise Subscription
artifact repository to your internal artifact repository. See Spring Enterprise Subscription for Artifact
Repository Administrators for details.

Your Maven or Gradle build environment must have access to an artifact repository where the
Spring Boot Governance Starter library is available, at group path
com.vmware.tanzu.spring.governance.

Configure the Dependency

The instructions in the following sections describe how to add the Spring Boot Governance Starter
dependency to your project’s Gradle or Maven build file.

Gradle

In your build.gradle file, add the governance-starter dependency:

dependencies {

 ...

 implementation "com.vmware.tanzu.spring.governance:governance-starter:1.0.0"

}

Maven

In your pom.xml file, add the governance-starter dependency:

...

<dependency>

 <groupId>com.vmware.tanzu.spring.governance</groupId>

 <artifactId>governance-starter</artifactId>

 <version>1.0.0</version>

</dependency>

Run the Application

If the app does not have the necessary TLS setting in place, the app will fail to start with the following error
(or similar):

APPLICATION FAILED TO START

Description:

FIPS validation test case(s) encountered 1 failure(s):

Tanzu Spring

113

- Failed test for TNZSPEC-0001: Application must use TLS

 - Expected TLS to be enabled for connector at port 8080

Action:

Resolve all test failures

By default, the app exits on a FIPS validation error, following FIPS rules. However, you can turn that off by
setting a property to allow continuous improvement in test environment:

tanzu.governance:

 fips:

 exit-on-failure: false

By default, all specs will be checked. However, you can skip specific specs by providing them as a
comma-separated list to the skip property:

tanzu.governance:

 specs:

 skip: TNZSPEC-0001,TNZSPEC-0020

The governance-starter brings in a couple of FIPS-related Bouncy Castle libraries as transitive
dependencies. By default, BouncyCastle is configured in FIPS mode and is set as the primary security
provider in the application context. You can override this behavior by setting the enforce property:

tanzu.governance:

 fips:

 config:

 bouncy-castle:

 enforce: false

Enable TLS with a PKCS12 keystore (non-compliant)

1. Generate a certificate with keytool:

keytool -genkeypair -alias "demo" -keyalg RSA -keysize 4096 -validity 3650 \

-dname "CN=localhost" -keypass changeit \

-keystore src/main/resources/keystore.p12 \

-ext "SAN=dns:localhost,dns:hello-fips,dns:hello-fips.sample" \

-storeType PKCS12 -storepass changeit

2. Add properties to application.yml to configure TLS:

server:

 port: 8443

 ssl:

 enabled: true

 key-alias: demo

 key-store: classpath:keystore.p12

 key-store-password: changeit

 key-store-type: PKCS12

Tanzu Spring

114

3. In this case, the app would fail to start because this key store type is not available in an approved
mode of operation due to the algorithms required for PBE key generation in the PKCS12 standard.
See section 7 in the Bouncy Castle documentation.

Caused by: java.security.NoSuchAlgorithmException: Cannot find any provider sup

porting PBES2

 at java.base/javax.crypto.Cipher.getInstance(Cipher.java:574) ~[na:na]

 at java.base/sun.security.pkcs12.PKCS12KeyStore.lambda$engineGetKey$0(PKCS1

2KeyStore.java:363) ~[na:na]

 at java.base/sun.security.pkcs12.PKCS12KeyStore$RetryWithZero.run(PKCS12Key

Store.java:257) ~[na:na]

 at java.base/sun.security.pkcs12.PKCS12KeyStore.engineGetKey(PKCS12KeyStor

e.java:361) ~[na:na]

 ... 30 common frames omitted

Enable TLS with a BCFKS certificate (compliant)

1. Generate a certificate with keytool:

export JAR_FILE="bc-fips-1.0.2.4.jar"

export PROVIDER="org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider"

Download the bouncy castle jar to create the cert with approved encryption me

thod

curl -s -o "$JAR_FILE" https://downloads.bouncycastle.org/fips-java/bc-fips-1.

0.2.4.jar

cd

keytool -genkeypair -alias demo -keyalg RSA -keysize 4096 -validity 3650 \

-dname "CN=localhost" -keypass changeit \

-keystore src/main/resources/keystore.bks \

-ext "SAN=dns:localhost,dns:hello-fips,dns:hello-fips.samples" \

-storeType BCFKS -storepass changeit \

-providerPath "$JAR_FILE" \

-provider "$PROVIDER" \

-providerClass "$PROVIDER"

2. Add the properties to application.yaml to configure TLS:

server:

 port: 8443

 ssl:

 enabled: true

 key-alias: demo

 key-store: classpath:keystore.bks

 key-store-password: changeit

 key-password: changeit

 key-store-type: "BCFKS"

The app now starts up correctly.

The Governance Actuator Endpoint

Tanzu Spring

115

https://downloads.bouncycastle.org/fips-java/docs/BC-FJA-UserGuide-1.0.2.pdf

The Governance Starter library adds an actuator endpoint containing a summary of the test results, the
collected details, and the individual test runs. The tests are re-run on every call to the endpoint.

The endpoint can be accessed at the governance actuator endpoint, which returns the tests and specs for
all tags. See this example: https://localhost:8443/actuator/governance.

Filter by tag

Specs have tags associated with them to allow for filtering the spec. To filter the results by a specific tag,
add it as a query parameter as shown in this example: https://localhost:8443/actuator/governance?
tag=FIPS-140-3

The following tags are available in the predefined specifications:

Tag Description

FIPS-140-3 Specs related to the Federal Information Processing Standard (FIPS) Publication 140-3.

NIST.SP.800-

52r2

Specs related to NIST.SP.800-52r2, Guidelines for the Selection, Configuration, and Use of Transport Layer
Security (TLS) Implementations.

NIST.SP.800-

131Ar2

Specs related to NIST Special Publication 800-131A Rev. 2, Transitioning the Use of Cryptographic
Algorithms and Key Lengths

PCIv4 Specs related PCI Data Security Standard (PCI DSS) v4.0.

DHS-4300B Specs related DHS National Security Systems: Control Guidance Instruction Number: 4300B.102

CNSSI-1253J Specs related Committee on National Security Systems Instruction (CNSSI) 1253, Security Categorization
and Control Selection for National Security Systems

IRS

p1075r11-

2021

Specs related IRS Publication 1075 (Rev. 11-2021): Tax Information Security GuidelinesFor Federal, State
and Local Agencies

BouncyCastle Specs related to the BouncyCastle configuration in the application.

Exposing the Endpoint

Add application properties to expose the Governance Actuator Endpoint:

management:

 endpoints:

 web:

The Governance Starter library brings in spring-boot-actuator as a transitive
dependency, which causes the default actuator endpoints to be made available. For more
details about the Spring Boot Actuator, including what endpoints are enabled by default and
how to turn them off, see the Spring documentation.

If there is a space in the tag name replace it with a %20 when using it as a query
parameter;
for example: https://localhost:8443/actuator/governance?tag=IRS%20p1075r11-2021.

Tanzu Spring

116

https://docs.spring.io/spring-boot/reference/actuator/endpoints.html

 exposure:

 include: "governance"

Viewing the Governance Actuator Endpoint

Start the application again and access https://localhost:8443/actuator/governance?tag=FIPS-140-
3. You should see the comprehensive report containing the FIPS stance, relevant configuration details, all
the test rule runs, and an overall test summary at the bottom:

{

 "details": ...,

 "tests": ...,

 "timestamp": "2024-03-26T14:19:43Z",

 "results": {

 "totalTestCasesRan": 16,

 "totalTestCasesPassed": 16,

 "totalTestCasesFailed": 0,

 "totalTestCasesUnknown": 0,

 "totalTestCasesSkipped": 0,

 "allTestCasesPassed": true

 }

}

The field totalTestCasesRan is the sum of the tests that passed, failed, and resulted in an unknown state.
The unknown state can occur when the library encountered a problem running a test, or collecting the data
for the test.

For example, the library uses reflection while collecting the configuration of the application. In the case
where reflection fails, the test result is unknown. If you encounter this result when running the pre-defined
tests, contact Broadcom Support with your use case.

If there are failing or unknown tests, the library forces the application to shut down. However, you can
bypass the shutdown by deactivating the specific test or by deactivating the exit-on-failure flag.

See Library Configuration Options for further instructions.

Library Configuration Options

The Enterprise Spring Boot Governance Starter library can be configured with the following properties.

Property Description

tanzu.governance.test-
mode

Null by default. Possible values: [once, per_request]. When unset or set to once, the library
runs the tests once at startup and returns the same result going forward. When set to
per_request, the library runs tests at startup and at every call to the /actuator/governance
endpoint.

tanzu.governance.fips.e
xit-on-failure

True by default. When true, the application runs validation tests at startup and shutdown if any
tests fail; otherwise it prints a warning message and continues.

tanzu.governance.fips.c
onfig.bouncy-
castle.enforce

True by default. When true, BouncyCastle is configured in FIPS mode and is set as the primary
security provider in application context.

Tanzu Spring

117

https://support.broadcom.com/

Property Description

tanzu.governance.fips.c
onfig.bouncy-
castle.provider-config

Null by default. Set to override the BouncyCastle FIPS provider’s configuration. See the Bouncy
Castle documentation, Section 2.3: Provider configuration, for accepted values.

tanzu.governance.fips.c
onfig.server-tls.enforce

True by default. When true, the application configures the web server with FIPS default ciphers
and protocols. Supports Tomcat and Netty.

tanzu.governance.specs
.skip

Empty by default. Comma-separated list of Spec IDs to skip when performing validations.

Note that even if tanzu.governance.fips.exit-on-failure is set to false, your application may still fail
to start if a rule is enforced by default, but related configuration or beans are not available.

For example, to enforce server TLS, the application must have SSL configured in its application properties:

server:

 ssl:

 enabled: true

 bundle: my-ssl-bundle

 // Or prior to SpringBoot 3.1 without the SSL bundle:

 key-alias: my-key

 key-store: classpath:certs/my-key-store.bks

 key-store-password: changeit

 key-password: changeit

 key-store-type: "BCFKS"

An application without proper SSL configurations results in server startup error with
tanzu.governance.fips.exit-on-failure=false because the enforcer cannot find available SSL
settings in the application context. To bypass this error, you can set
tanzu.governance.fips.config.server-tls.enforce to false.

Governance Specifications

This topic describes the Governance Specifications.

See also Preconfigured Specifications.

A governance specification is composed of the fields shown in the following tables:

Name Description

id A unique id for the spec, e.g., “TNZSPEC-0001”

org Represents the organizational structure or identifier associated with the spec. It typically follows the format of a
Java package name; e.g., “com.vmware.tanzu”

title A title for the specification

description A detailed description of the specification

reference
(1)

An optional reference to the standard being referenced. See the structure in the next table (1).

tags A list of tags associated with the spec. The tag can be used to filter the tests and specs in the governance
actuator endpoint.
Must not include spaces.

Tanzu Spring

118

https://downloads.bouncycastle.org/fips-java/docs/BC-FJA-UserGuide-1.0.2.pdf

(1) The reference is made up of the following fields:

Name Description

standard Optional. The name of the standard; e.g., “NIST SP 800-52 Rev. 2”

descriptio
n

A description of the standard or the section to reference; e.g., “Section 3: Minimum Requirements for TLS
Servers.”

url Optional. The URL to reference; e.g., https://doi.org/10.6028/NIST.SP.800-52r2

Preconfigured Governance Specifications

This topic describes the pre-configured Governance specifications in the governance-starter library.

See also Governance Specifications.

The governance-starter library is pre-configured with the specifications shown in the following tables.

TNZSPEC-0001

id TNZSPEC-0001

org com.vmware.tanzu

title Application must use TLS

descri
ption

Any network service that handles sensitive or valuable data, whether it is personally identifiable information (PII),
financial data, or login information, needs to adequately protect that data.

referen
ce

standard NIST SP 800-52 Rev. 2

description "Section 1: Introduction"

url https://doi.org/10.6028/NIST.SP.800-52r2

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0002

id TNZSPEC-0002

org com.vmware.tanzu

title Application must support TLS 1.2 and TLS 1.3

descrip
tion

Agencies shall support TLS 1.3 by January 1, 2024. After this date, servers shall support TLS 1.3 for both
government-only and citizen or business-facing applications.
In general, servers that support TLS 1.3 should be configured to use TLS 1.2 as well.

Tanzu Spring

119

referen
ce

standard NIST SP 800-52 Rev. 2

description "Section 3: Minimum Requirements for TLS Servers."

url https://doi.org/10.6028/NIST.SP.800-52r2

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0003

id TNZSPEC-0003

org com.vmware.tanzu

title TLS must be configured with NIST-approved cipher suites

descriptio
n

The server shall be configured to only use cipher suites that are composed entirely of NIST approved
algorithms.

reference standard NIST SP 800-52 Rev. 2

description "Section 3.3.1: Cipher Suites."

url https://doi.org/10.6028/NIST.SP.800-52r2

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0004

id TNZSPEC-0004

org com.vmware.tanzu

title When using RSA, the key size should be 2048 bits or greater

descriptio
n

The server shall be configured to only use cipher suites that are composed entirely of NIST approved
algorithms.

reference standard NIST SP 800-131A Rev. 2

description "Section 3: Digital Signatures."

url https://doi.org/10.6028/NIST.SP.800-131Ar2

Tanzu Spring

120

tags FIPS-140-3

NIST.SP.800-131Ar2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0005

id TNZSPEC-0005

org com.vmware.tanzu

title When using ECDSA and EdDSA, the key size should be 224 bits or greater

descripti
on

The security strength provided by an elliptic-curve-based signature algorithm is no greater than 1/2 of the length
of the domain parameter n.
Therefore, the length of n shall be at least 224 bits to meet the minimum security-strength requirement of 112 bits
for Federal Government use.

referenc
e

standard NIST SP 800-131A Rev. 2

description "Section 3: Digital Signatures."

url https://doi.org/10.6028/NIST.SP.800-131Ar2

tags FIPS-140-3

NIST.SP.800-131Ar2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0006

id TNZSPEC-0006

org com.vmware.tanzu

title HTTPS TLS Clients must use hostname verification

descri
ption

Hostname verification is essential for ensuring that the server's certificate matches the domain name of the server to
prevent Man-in-the-Middle (MitM) attacks and protect against spoofing and other security threats.

refere
nce

standard NIST SP 800-52 Rev. 2

description "Section 3.4.1.2 Server Name Indication"

url https://doi.org/10.6028/NIST.SP.800-52r2

Tanzu Spring

121

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0007

id TNZSPEC-0007

org com.vmware.tanzu

title HTTPS TLS Clients must use certificate validation

descrip
tion

Certificate validation ensures that the presented certificate is authentic and issued by a trusted authority,
maintaining the security and integrity of communication channels.

referen
ce

standard NIST SP 800-52 Rev. 2

description "Section 4.5 Server Authentication"

url https://doi.org/10.6028/NIST.SP.800-52r2

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0008

id TNZSPEC-0008

org com.vmware.tanzu

title JDBC TLS Clients must use hostname verification

descri
ption

Hostname verification is essential for ensuring that the server's certificate matches the domain name of the server to
prevent Man-in-the-Middle (MitM) attacks and protect against spoofing and other security threats.

refere
nce

standard NIST SP 800-52 Rev. 2

description "Section 3.4.1.2 Server Name Indication"

url https://doi.org/10.6028/NIST.SP.800-52r2

Tanzu Spring

122

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0009

id TNZSPEC-0009

org com.vmware.tanzu

title JDBC TLS Clients must use hostname verification

descrip
tion

Certificate validation ensures that the presented certificate is authentic and issued by a trusted authority,
maintaining the security and integrity of communication channels.

referen
ce

standard NIST SP 800-52 Rev. 2

description "Section 4.5 Server Authentication"

url https://doi.org/10.6028/NIST.SP.800-52r2

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0010

id TNZSPEC-0010

org com.vmware.tanzu

title LDAP TLS Clients must use hostname verification

descri
ption

Hostname verification is essential for ensuring that the server's certificate matches the domain name of the server to
prevent Man-in-the-Middle (MitM) attacks and protect against spoofing and other security threats.

refere
nce

standard NIST SP 800-52 Rev. 2

description "Section 3.4.1.2 Server Name Indication"

url https://doi.org/10.6028/NIST.SP.800-52r2

Tanzu Spring

123

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0011

id TNZSPEC-0011

org com.vmware.tanzu

title LDAP TLS Clients must use certificate validation

descrip
tion

Certificate validation ensures that the presented certificate is authentic and issued by a trusted authority,
maintaining the security and integrity of communication channels.

referen
ce

standard NIST SP 800-52 Rev. 2

description "Section 4.5 Server Authentication"

url https://doi.org/10.6028/NIST.SP.800-52r2

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0012

id TNZSPEC-0012

org com.vmware.tanzu

title Application must use TLS when connecting to OIDC Provider

descri
ption

Any network service that handles sensitive or valuable data, whether it is personally identifiable information (PII),
financial data, or login information, needs to adequately protect that data.

referen
ce

standard NIST SP 800-52 Rev. 2

description "Section 1: Introduction"

url https://doi.org/10.6028/NIST.SP.800-52r2

Tanzu Spring

124

tags FIPS-140-3

NIST.SP.800-52r2

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0013

id TNZSPEC-0013

org com.vmware.tanzu

title Uniquely Identify and Authenticate Users

description Ensure that both organizational and non-organizational users are uniquely identified and authenticated.

reference standard NIST SP 800-53 Rev. 5

description "3.7 Identification and Authentication"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0014

id TNZSPEC-0014

org com.vmware.tanzu

title Implement cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

desc
ripti
on

Encrypting remote sessions is necessary to ensure the confidentiality and integrity of data transmitted between a
client and a remote server. It prevents unauthorized access and eavesdropping by encrypting the communication,
making it unreadable to anyone without the decryption key.

refer
ence

standard NIST SP 800-53 Rev. 5

descripti
on

"Security and Privacy Controls for Information Systems and Organizations, AC-17 (2) Protection of
confidentiality and integrity using encryption"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

Tanzu Spring

125

TNZSPEC-0015

id TNZSPEC-0015

org com.vmware.tanzu

title Concurrent Session Control

descri
ption

Limit the number of concurrent sessions to ensure only a certain number of users can access the system at any
given time, preventing overload and ensuring optimal performance and security.

referen
ce

standard NIST SP 800-53 Rev. 5

description "Security and Privacy Controls for Information Systems and Organizations, AC-10 Concurrent
Session Control"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

DHS-4300B

CNSSI-1253J

TNZSPEC-0016

id TNZSPEC-0016

org com.vmware.tanzu

title Verify that no unencrypted static authenticators are embedded in applications

descri
ption

Plain-text passwords (i.e. unencrypted static authenticators) cannot be included in applications

refere
nce

stand
ard

NIST SP 800-53 Rev. 5

descri
ption

"Security and Privacy Controls for Information Systems and Organizations, IA-5 (7) Ensure that
unencrypted static authenticators are not embedded in applications or other forms of static storage"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0017

id TNZSPEC-0017

org com.vmware.tanzu

title Verify input validation/sanitization functionality is available in application

Tanzu Spring

126

desc
ripti
on

Validating inputs refers to the process of checking and verifying the accuracy, completeness, and integrity of data
entered into a system. It ensures that the input meets specified criteria, preventing errors, security breaches, and
system malfunctions caused by incorrect or malicious data.

refer
ence

standard NIST SP 800-53 Rev. 5

description "Security and Privacy Controls for Information Systems and Organizations, SI-10 Information Input
Validation"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

IRS p1075r11-2021

TNZSPEC-0018

id TNZSPEC-0018

org com.vmware.tanzu

title Access Control - Session Termination after a period of inactivity

descriptio
n

Automatically terminate a user session after a period of inactivity.

reference standard NIST SP 800-53 Rev. 5

descriptio
n

"Security and Privacy Controls for Information Systems and Organizations, AC012 Session
Termination"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0019

id TNZSPEC-0019

org com.vmware.tanzu

title Verify replay resistant techniques are employed in the application (CSRF)

desc
riptio

n

Replay-resistant techniques for authenticators are necessary to prevent unauthorized access or impersonation.
These techniques ensure that authentication credentials cannot be intercepted and replayed by attackers, thereby
enhancing the security of the authentication process.

Tanzu Spring

127

refer
ence

standar
d

NIST SP 800-53 Rev. 5

descrip
tion

"Security and Privacy Controls for Information Systems and Organizations, IA-2 (8) Identification and
Authentication (Organizational Users) | Access to Accounts — Replay Resistant"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

TNZSPEC-0020

id TNZSPEC-0020

org com.vmware.tanzu

title Verify audit events are available in application

descri
ption

An event is an observable occurrence in a system. The types of events that require logging are those events that
are significant and relevant to the security of systems and the privacy of individuals.

refere
nce

standard NIST SP 800-53 Rev. 5

description "Audit and Accountability, AU-2 Event Logging"

url https://doi.org/10.6028/NIST.SP.800-53r5

tags NIST-800-53

PCIv4

DHS-4300B

CNSSI-1253J

IRS p1075r11-2021

TNZSPEC-0100

id TNZSPEC-0100

org com.vmware.tanzu

title When using Bouncy Castle FIPS Java API, the BCFIPS provider should be the first security provider

descripti
on

To ensure the BouncyCastleFipsProvider is used as the default provider for cryptographic algorithms, it should be
the first security provider.

reference description "BC-FJA 1.0.2 (Bouncy Castle FIPS Java API) User Guide"

url https://downloads.bouncycastle.org/fips-java/docs/BC-FJA-UserGuide-1.0.2.pdf

Tanzu Spring

128

tags FIPS-140-3

BouncyCastle

TNZSPEC-0101

id TNZSPEC-0101

org com.vmware.tanzu

title When using Bouncy Castle FIPS Java API, the library's SHA-256 should match the checksum provided by the
vendor

descri
ption

To ensure the Bouncy Castle FIPS module has not been tampered or corrupted during transit, the checksum of the
dependency should be verified against the checksum provided by the vendor.

referen
ce

description "Bouncy Castle JAR Checksums"

url https://www.bouncycastle.org/fips-java/

tags FIPS-140-3

BouncyCastle

TNZSPEC-0102

id TNZSPEC-0102

org com.vmware.tanzu

title When using the Bouncy Castle FIPS Java API, the latest version should be used

description The latest release contains fixes for defects found in prior versions.

reference description "BC Java FIPS Release Notes"

url https://www.bouncycastle.org/fips-java/RELEASE_NOTES.md

tags FIPS-140-3

BouncyCastle

TNZSPEC-0103

id TNZSPEC-0103

org com.vmware.tanzu

title When using the Bouncy Castle FIPS Java API, the module must be operated in FIPS mode

descripti
on

The Bouncy Castle FIPS Java API must be installed, initialized and configured as specified in the Security Policy
Section 8 and operated in FIPS mode.

Tanzu Spring

129

referenc
e

standard "FIPS 140-2"

descripti
on

"BC-FJA (Bouncy Castle FIPS Java API), Certificate 4616, Security Policy"

url https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-
program/documents/security-policies/140sp4616.pdf

tags FIPS-140-3

BouncyCastle

TNZSPEC-0104

id TNZSPEC-0104

org com.vmware.tanzu

title When using Bouncy Castle Java (D)TLS API and JSSE Provider, the BCJSSE provider should be the second
security provider

descripti
on

The Bouncy Castle BCJSSE provider should be the second security provider after BCFIPS.

referenc
e

descripti
on

"Java (D)TLS API and JSSE Provider User Guide Version 1.0.18, Section 2.1.1 Configuring the
BCJSSE Provider in FIPS mode"

url https://downloads.bouncycastle.org/fips-java/docs/BC-FJA-%28D%29TLSUserGuide-1.0.18.pdf

tags FIPS-140-3

BouncyCastle

TNZSPEC-0105

id TNZSPEC-0105

org com.vmware.tanzu

title When using Bouncy Castle Java (D)TLS API and JSSE Provider, the library's SHA-256 should match the checksum
provided by the vendor

descri
ption

To ensure the Bouncy Castle Java (D)TLS API and JSSE Provider library has not been tampered or corrupted during
transit, the checksum of the dependency should be verified against the checksum provided by the vendor.

refere
nce

description "Bouncy Castle JAR Checksums"

url https://www.bouncycastle.org/fips-java/

tags FIPS-140-3

BouncyCastle

TNZSPEC-0106

id TNZSPEC-0106

Tanzu Spring

130

org com.vmware.tanzu

title When using the Bouncy Castle Java (D)TLS API and JSSE Provider, the latest version should be used

description The latest release contains fixes for defects found in prior versions.

reference description "BC Java FIPS Release Notes"

url https://www.bouncycastle.org/fips-java/RELEASE_NOTES.md

tags FIPS-140-3

BouncyCastle

TNZSPEC-0107

id TNZSPEC-0107

org com.vmware.tanzu

title When using the Bouncy Castle Java (D)TLS API and JSSE Provider, the module must be operated in FIPS mode.

descrip
tion

The BCJSSE provider has a FIPS mode that helps restrict the provider to cipher suites and parameters that can be
offered in a FIPS compliant TLS client or server setup.

referen
ce

descripti
on

"Java (D)TLS API and JSSE Provider User Guide Version 1.0.18, Section 2.1.1 Configuring the
BCJSSE Provider in FIPS mode"

url https://downloads.bouncycastle.org/fips-java/docs/BC-FJA-%28D%29TLSUserGuide-1.0.18.pdf

tags FIPS-140-3

BouncyCastle

Custom Standards Support and Validation

The Enterprise Spring Boot Governance Starter governance-starter library supports adding and validating
custom specifications. This feature allows you to incorporate organization-specific regulations, industry
guidelines, or proprietary standards into your validation processes.

To run validation against custom specifications, follow these steps:

1. Add custom governance specs by implementing the GovernanceSpecProvider bean.

2. Create a class in which to store your collected information.

3. Implement a GovernanceDetailsScanner bean to gather details and populate the class created in
the previous step.

4. Implement a GovernanceValidator bean to validate against the collected data.

A spec id can only be validated by a single validator. A validator can only validate a single
spec id.
That is, a spec id has a 1:1 mapping to a GovernanceValidator bean.

Tanzu Spring

131

Define a GovernanceSpecProvider bean to add custom
specs

To add custom governance specs, see the following example:

package com.example.compliance;

import com.vmware.tanzu.spring.governance.spec.GovernanceSpec;

import com.vmware.tanzu.spring.governance.spec.GovernanceSpecProvider;

import org.springframework.stereotype.Component;

import java.util.List;

@Component

public class ExampleOrgGovernanceSpecProvider implements GovernanceSpecProvider {

@Override

public List<GovernanceSpec> getSpecs() {

return List.of(getSpec());

}

private static GovernanceSpec getSpec() {

var spec = new GovernanceSpec();

spec.setId("MY-ORG-0001");

spec.setTitle("TLS must be enabled");

spec.setDescription("As per org rules, all apps must have TLS enable

d");

spec.setOrg("com.example");

spec.setTags(List.of("MY-ORG"));

return spec;

}

}

​Create a custom class to store application details

To create a class in which to store your collected information, see the following example of a custom class:

public record ExampleOrgComplianceDetails(

boolean serverTlsEnabled,

boolean managementTlsEnabled) { }

Define a GovernanceDetailsScanner bean

Gather application details and populate the class created earlier. Implement the interface methods, where:

getKey() is the key for the details object. In the validator bean, a map will be provided. Use this
key to fetch the details object from the map.

scan() returns an instance of the collected details object.

package com.example.compliance;

import com.vmware.tanzu.spring.governance.GovernanceDetailsScanner;

import org.springframework.boot.actuate.autoconfigure.web.server.ManagementServerPrope

Tanzu Spring

132

rties;

import org.springframework.boot.autoconfigure.web.ServerProperties;

import org.springframework.stereotype.Component;

@Component

public class ExampleOrgDetailsScanner implements GovernanceDetailsScanner {

static final String KEY = "exampleDetails";

private final ServerProperties serverProperties;

private final ManagementServerProperties managementServerProperties;

ExampleOrgDetailsScanner(ServerProperties serverProperties,

ManagementServerProperties managementServerProperties) {

this.serverProperties = serverProperties;

this.managementServerProperties = managementServerProperties;

}

@Override

public String getKey() {

return KEY;

}

@Override

public Object scan() {

var serverTlsEnabled = serverProperties.getSsl() != null

&& serverProperties.getSsl().isEnabled();

var actuatorIsUsingSameTlsConfig = serverTlsEnabled

&& managementServerProperties.getSsl() == null;

var actuatorHasSeparateTlsConfig = managementServerProperties.getSsl()

!= null

&& managementServerProperties.getSsl().isEnabled();

var managementTlsEnabled = actuatorIsUsingSameTlsConfig || actuatorHas

SeparateTlsConfig;

return new ExampleOrgComplianceDetails(serverTlsEnabled, managementTls

Enabled);

}

}

Create a GovernanceValidator bean to run your validation
rules

Implement the interface methods, where:

requiresKey() is the key defined in the scanner where this validator can find the details.

appliesToSpec() where the validator returns the GovernanceSpec it validates.

validate() where the validator returns a List<ValidationTestRun> after validating the details.

package com.example.compliance;

import com.vmware.tanzu.spring.governance.GovernanceValidator;

import com.vmware.tanzu.governance.ValidationState;

import com.vmware.tanzu.spring.governance.ValidationTestRun;

import com.vmware.tanzu.spring.governance.spec.GovernanceSpec;

import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;

import org.springframework.stereotype.Component;

Tanzu Spring

133

import java.util.List;

import java.util.Map;

@Component

public class ExampleOrgTlsEnabledValidator implements GovernanceValidator {

private static final String ID = "MY-ORG-0001";

@Override

public String requiresKey() {

return ExampleOrgDetailsScanner.KEY;

}

@Override

public GovernanceSpec appliesToSpec(List<GovernanceSpec> list) {

return list.stream()

.filter(spec -> ID.equals(spec.getId()))

.findFirst()

.orElse(null);

}

@Override

public List<ValidationTestRun> validate(Map<String, Object> appDetails) {

ExampleOrgComplianceDetails exampleDetails = (ExampleOrgComplianceDeta

ils) getDetails(appDetails);

var serverTlsEnabledTest = new ValidationTestRun();

var passedTest1 = exampleDetails.serverTlsEnabled() ? ValidationState.

PASS : ValidationState.FAIL;

serverTlsEnabledTest.setState(passedTest1);

serverTlsEnabledTest.setDescriptionFormat("Observed server tls enable

d: %tlsEnabled");

serverTlsEnabledTest.setParameters(Map.of("tlsEnabled", passedTest1));

var managementTlsEnabledTest = new ValidationTestRun();

var passedTest2 = exampleDetails.managementTlsEnabled() ? ValidationSt

ate.PASS : ValidationState.FAIL;

managementTlsEnabledTest.setState(passedTest2);

managementTlsEnabledTest.setDescriptionFormat("Observed management tls

enabled: %tlsEnabled");

managementTlsEnabledTest.setParameters(Map.of("tlsEnabled", passedTest

2));

return List.of(serverTlsEnabledTest, managementTlsEnabledTest);

}

}

Also note:

The interface method getDetails() returns the details from the appDetails Map using the key.

The default interface method appliesToDetails(Map<String, Object> appDetails) (not shown)
can be overridden to configure whether the validator should be run against the details. When it
returns false, validate() is not executed. The total test cases do not include this test.

The string in ValidationTestRun.setDescriptionFormat() can include parameters; for example,
"Observed management tls enabled: %tlsEnabled". These parameters must be present as

Tanzu Spring

134

keys in the Map for ValidationTestRun.setParameters(). In the output JSON, the value will be
used; for example, “Description”: “Observed server tls enabled: true”

Validation State

The test result is represented by the ValidationState:

PASS - the test succeeded

FAIL - the test failed

UNKNOWN - an issue occurred while collecting data or running the test.
For example, the library uses reflection while collecting the configuration of the application. In the
case where reflection fails, the result is treated as UNKNOWN. If you encounter this result when
running the pre-defined tests, contact Broadcom Support with your use case.

If there are failing or unknown tests, the library forces the application to shut down. However, you can
bypass the shutdown by deactivating the specific test, or by deactivating the exit-on-failure flag.

See Library Configuration Options for further instructions.

Run the application

Run the app and access the Governance Endpoint.
Filter by the tag for your spec: https://localhost:8443/actuator/governance?tag=MY-ORG.

Observe the details field in the JSON that includes a field, exampleDetails, from the
ExampleOrgDetailsScanner. You will see the test run result shows failure.

Set the management port on a separate port,; then the test will pass.

management:

 server:

 port: 9443

Troubleshooting

This topic describes issues you may run into while setting up Enterprise Spring Boot Governance Starter in
your application dependencies, along with solutions or workarounds.

Problems running your app as a fat jar

After adding Enterprise Spring Boot Governance Starter as a dependency to your application, you may run
into the following error when running the fat jar produced by the Spring Boot plug-in:

11:42:15.126 [main] ERROR org.springframework.boot.SpringApplication -- Application ru

n failed

org.bouncycastle.crypto.fips.FipsOperationError: Module checksum failed: unable to fin

d

at org.bouncycastle.crypto.fips.FipsStatus.checksumValidate(Unknown Source)

at org.bouncycastle.crypto.fips.FipsStatus.isReady(Unknown Source)

 ...

Tanzu Spring

135

https://support.broadcom.com/

Cause

The current version of Bouncy Castle is not compatible with the nested jar support in Spring Boot 3.2. For
more details, see bc-fips and SpringBoot 3.2 compatibility issue.

Solution

Until the new Bouncy Castle fix is approved again, the workaround is to use the Spring Boot loader fallback
option to your application:

For Gradle:

bootJar {

 loaderImplementation = org.springframework.boot.loader.tools.LoaderImplemen

tation.CLASSIC

}

For Maven:

<build>

<plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <executions>

 <execution>

 <goals>

 <goal>repackage</goal>

 </goals>

 <configuration>

 <loaderImplementation>CLASSIC</loaderImplementation>

 </configuration>

 </execution>

 </executions>

 </plugin>

</plugins>

</build>

Tanzu Spring

136

https://github.com/bcgit/bc-java/issues/1538

Tanzu Local Authorization Server

Tanzu Local Authorization Server helps with running Authorization Server locally, without relying on external
services (Okta, Azure Entra, …) or a more heavyweight solutions (Keycloak). It provides sane defaults and
just enough features to produce access_tokens and id_tokens that look like prod tokens.

Tanzu Local Authorization Server also helps with unit-and-integration testing. By leveraging the experimental
Spring Boot Testjars project, or by packaging it in a Docker image, tests can rely on a fast-starting
authserver.

Release Notes

Getting Started with Local Authorization Server

Using Local Authorization Server in your Tests

Reference Configuration

Local Authorization Server Release Notes

These are the release notes for VMware Tanzu Local Authorization Server.

v1.0.1

Release Date: December 19th, 2024

Default OAuth2 client supports OAuth2 Token Exchange grant.

v1.0.0

Release Date: October 25th, 2024

Add custom login page.

Add OAuth2 provider name in default Spring Boot config printed to the console on startup.

v0.0.7

Release Date: August 20th, 2024

Add support for OpenID Connect RP-initiated logout

Add support for Cross-Origin Resource Sharing (CORS) on every domain, with Access-Control-
Allow-Origin: "*"

0.0.6

Tanzu Spring

137

https://github.com/spring-projects-experimental/spring-boot-testjars
https://openid.net/specs/openid-connect-rpinitiated-1_0.html

This is the first release of VMware Tanzu Local Authorization Server.

Getting Started with Local Authorization Server

VMware Tanzu Local Authorization Server offers a simple, lightweight solution for running an OAuth2
Authorization Server / OpenID Connect Provider locally.

To install Tanzu Local Authorization Server:

1. Follow the instructions on Broadcom Support, to obtain access to the Spring Enterprise
Subscription, and save the secure token for access.

2. Using the token, download the jar file for the latest release.

3. Alternatively, if your company is mirroring the Broadcom artifactory, you can download it directly
using Maven. Find the current version from the release notes page, and then run:

mvn dependency:copy \

 -Dartifact=com.vmware.tanzu.spring:tanzu-local-authorization-server:<VERSION>

\

 -DoutputDirectory=.

To run Tanzu Local Authorization Server, Ensure that Java 17+ is installed, and then run:

java -jar tanzu-local-authorization-server-<VERSION>.jar

The command line output explains how to use the app in a Spring Boot client app, and which users
can be used to log in. By default, Tanzu Local Authorization Server registers one Client application,
and one user that can be used to log in. When using the default Client (client-id: default-
client), Tanzu Local Authorization Server does not validate the redirect_uri or the scope
parameters when making requests: all scopes are allowed, and all redirect_uris are considered
valid.

To use custom configuration and to customize Tanzu Local Authorization Server, run the following
command.
For more information, see Tanzu Local Authorization Server Reference Configuration.

java -jar tanzu-local-authorization-server-<VERSION>.jar --config=my-configurat

ion.yml

Role-based or attribute-based access control using OpenID
claim

Users of Tanzu Local Authorization Server can be defined in a configuration file. Arbitrary user attributes can
be defined, and, when the Client requests the profile scope, those attributes are translated into id_token
claims. The Client can then use the additional claims to make authorization decisions.

1. First, create a configuration file; for example, config.yml:

tanzu:

 local-authorization-server:

 users:

Tanzu Spring

138

https://support.broadcom.com/group/ecx/productdownloads?subfamily=Spring%20Enterprise%20Subscription
https://packages.broadcom.com/artifactory/spring-enterprise/com/vmware/tanzu/spring/tanzu-local-authorization-server/

 - username: alice

 password: alice-password

 attributes:

 # email is a standard OpenID claim, obtained with the email scope

 email: "alice@example.com"

 # roles is a custom, application-specific claim

 roles:

 - viewer

 - editor

 - admin

 - username: bob

 password: bob-password

 attributes:

 email: bob@example.com

 roles:

 - viewer

 - editor

2. Then, run Tanzu Local Authorization Server:

java -jar tanzu-local-authorization-server-<VERSION>.jar --config=config.yml

3. Copy the sample configuration that the authorization server prints out in the console, and use it in
your client application.
Ensure that the openid and profile scopes are included in
spring.security.oauth2.client.registration.tanzu-local-authorization-server.scope.

4. Finally, configure your client application to extract authorities from the custom roles claim, by
providing an OidcUserService bean:

@Bean

OidcUserService oidcUserService() {

 var oidcUserService = new OidcUserService();

 oidcUserService.setOidcUserMapper((oidcUserRequest, oidcUserInfo) -> {

 // Will map the "roles" claim from the `id_token` into user authorities

(roles)

 var roles = oidcUserRequest.getIdToken().getClaimAsStringList("roles");

 var authorities = AuthorityUtils.createAuthorityList();

 if (roles != null) {

 roles.stream()

 .map(r -> "ROLE_" + r)

 .map(SimpleGrantedAuthority::new)

 .forEach(authorities::add);

 }

 return new DefaultOidcUser(authorities, oidcUserRequest.getIdToken(), o

idcUserInfo);

 });

 return oidcUserService;

}

5. You can then check Roles in request or method security:

@Bean

SecurityFilterChain securityFilterChain(HttpSecurity http) throws Exception {

 return http

Tanzu Spring

139

 .authorizeHttpRequests(auth -> {

 auth.requestMatchers("/public/**").permitAll();

 auth.requestMatchers("/document/**").hasAnyRole("viewer", "edit

or", "admin");

 auth.requestMatchers("/admin/**").hasRole("admin");

 auth.anyRequest().authenticated();

 })

 .oauth2Login(Customizer.withDefaults())

 .build();

}

TLS support

Tanzu Local Authorization Server is designed to be used locally. Since there is no easy PKI-based TLS
support for local development, Tanzu Local Authorization Server does not support serving traffic over TLS.
However, some tools or libraries may require traffic to be served over TLS.

While TLS is not supported first-class, Tanzu Local Authorization Server is built on Spring Boot, and
exposes Spring Boot configuration properties. Spring Boot can be configured to serve traffic over TLS.
Update the configuration and add the following properties:

spring:

 ssl:

 bundle:

 pem:

 server:

 keystore:

 certificate: /path/to/certificate/localhost.pem

 private-key: /path/to/private/key/localhost-key.pem

server:

 ssl:

 bundle: server

 client-auth: NONE

Using Local Authorization Server in your Tests

This topic describes how to use VMware Tanzu Local Authorization Server in your tests.

Using in tests with Testcontainers

Tanzu Local Authorization Server can be packaged in a container, and used in tests with Testcontainers and
Spring Boot support for Testcontainers.

1. First, configure the test profile with the default configuration that is printed in the CLI, as explained
in Getting started. Then, add Testcontainer support to the project:

Gradle

testImplementation("org.springframework.boot:spring-boot-testcontainers")

testImplementation("org.testcontainers:junit-jupiter")

Maven

Tanzu Spring

140

https://testcontainers.com/
https://docs.spring.io/spring-boot/reference/testing/testcontainers.html

<dependencies>

 <!-- ... -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-testcontainers</artifactId>

 </dependency>

 <dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>junit-jupiter</artifactId>

 </dependency>

 <!-- ... -->

</dependencies>

2. Configure @SpringBootTest to use Tanzu Local Authorization Server and Testcontainers:

@Testcontainers(disabledWithoutDocker = true)

@SpringBootTest

class TestcontainersTests {

 @Container

 static GenericContainer<?> tanzuAuthServer = new GenericContainer<>("bellso

ft/liberica-openjre-alpine:21")

 .withCopyFileToContainer(

 // Point Testcontainers to the Tanzu-Local-Authorization-Se

rver release

 MountableFile.forHostPath("path/to/tanzu-local-authorizatio

n-server-<VERSION>.jar"),

 "/tanzu-local-authorization-server.jar")

 .withCommand("java", "-jar", "/tanzu-local-authorization-server.ja

r")

 .withExposedPorts(9000);

 @Test

 void contextLoads() {

 }

 @DynamicPropertySource

 static void clientRegistrationProperties(DynamicPropertyRegistry registry)

{

 // This will configure your Spring Boot app to point to the running con

tainer

 registry.add("spring.security.oauth2.client.provider.tanzu-local-author

ization-server.issuer-uri",

 () -> "http://localhost:" + tanzuAuthServer.getFirstMappedPort

());

 }

}

Using Local Authorization Server in tests with Spring Boot
Testjars

Combined with Spring Boot Testjars, using Tanzu Local Authorization Server with Spring Boot Testjars
allows for fast testing without relying on Docker.

Tanzu Spring

141

https://github.com/spring-projects-experimental/spring-boot-testjars

1. First, configure the test profile with the default configuration that is printed in the CLI, as explained
in the Getting started section above. Then, add Spring Boot Testjars to the project:

Gradle

testImplementation("org.springframework.experimental.boot:spring-boot-testjars:

0.0.2")

Maven

<dependency>

 <groupId>org.springframework.experimental.boot</groupId>

 <artifactId>spring-boot-testjars</artifactId>

 <version>0.0.2</version>

</dependency>

2. Configure @SpringBootTests to use Tanzu Local Authorization Server:

@SpringBootTest

class MyApplicationTests {

 @Test

 void contextLoads() {

 }

 @TestConfiguration(proxyBeanMethods = false)

 @EnableDynamicProperty

 static class TestOAuth2Login {

 @Bean

 @OAuth2ClientProviderIssuerUri(providerName = "tanzu-local-authorizatio

n-server")

 static CommonsExecWebServerFactoryBean authorizationServer() {

 return CommonsExecWebServerFactoryBean.builder()

 // Point Spring Boot Testjars to the Tanzu-Local-Authorizat

ion-Server release

 .classpath(cp -> cp.files("path/to/tanzu-local-authorizatio

n-server-<VERSION>.jar"))

 // Instruct Spring Boot Testjars to use the Spring Boot 3.3

JarLauncher (bundled in Tanzu-Local-Authorization-Server)

 .mainClass("org.springframework.boot.loader.launch.JarLaunc

her");

 }

 }

}

For more information about Spring Boot Testjars and OAuth2 clients, see the official Github repo.

Reference Configuration

VMware Tanzu Local Authorization Server can be further customized with the following configuration
properties. When a user is defined through custom configuration, the default user will not be registered.

Tanzu Spring

142

https://github.com/spring-projects-experimental/spring-boot-testjars?tab=readme-ov-file#oauth2clientproviderissueruri

When a client is defined through custom configuration, the default client is not configured. Clients
registered through configuration can be configured to enable redirect_uri and scope validation.

The following configuration can also be created by running the Tanzu Local Authorization Server with the --
print-sample-config flag.

server: # OPTIONAL

 # The port on which Tanzu Local Authorization Server runs. Defaults to 9000.

 port: 9000

tanzu:

 local-authorization-server:

 # OPTIONAL: whether to use a hardcoded RSA key for JWT signing, or a randomly gene

rated one.

 # Hardcoded keys mean faster startup time.

 jwk:

 # Defaults to false

 random: false

 # OPTIONAL: custom users for logging in

 users:

 - username: my-user # REQUIRED

 password: clear-text-password # REQUIRED

 # Attributes are added to the id_token based on requested scopes.

 # All attributes are optional.

 attributes: # OPTIONAL

 # standard OpenID Connect attributes:

 # scope: profile

 name: "Jane T. Spring"

 given_name: "Jane"

 family_name: "Spring"

 middle_name: "Team"

 nickname: "Spring"

 preferred_username: "jtspring"

 profile: "https://spring.io/team"

 picture: "https://spring.io/img/spring-2.svg"

 website: "https://spring.io"

 gender: "unspecified"

 birthdate: "1970-01-01"

 zoneinfo: "Europe/Paris"

 locale: "fr-FR"

 # scope: email

 email: "jane.spring@example.com"

 email_verified: true

 # scope: phone_number

 phone_number: "+1 (555) 555-1234"

 phone_number_verified: true

 # scope: address

 address:

 formatted: "1, OpenID St., Openid.net City, 1234 Identity Realm, Internet"

 street_address: "1, OpenID St."

 locality: "Openid.net City"

 region: "Identity Realm"

 postal_code: "1234"

 country: "Internet"

Tanzu Spring

143

 # all other attributes are custom ("user-defined"), and added to the id_toke

n claims when

 # the "profile" scope is requested

 some-claim: "some-value"

 custom-age: 42

 - username: other-user

 password: other-password

 # OPTIONAL: custom client registrations, which must match the client application's

 # spring.security.oauth2.client.registration.<id>.* properties

 clients:

 - client-id: "custom-client"

 client-secret: "custom-secret"

 # MUST be one or more of the following

 client-authentication-methods:

 - "client_secret_basic"

 - "client_secret_post"

 - "none"

 # MUST be one or more of the following

 authorization-grant-types:

 - "authorization_code"

 - "client_credentials"

 - "refresh_token"

 # OPTIONAL, can be anything

 scope:

 - "openid"

 - "email"

 - "profile"

 - "address"

 - "phone"

 - "message.read"

 - "message.write"

 # REQUIRED when authorization-grant-type contains authorization_code, otherwis

e OPTIONAL

 redirect-uris:

 # This is default Spring Boot redirect URI for the tanzu-local-authorization

-server provider

 - "http://127.0.0.1:8080/login/oauth2/code/tanzu-local-authorization-server"

 - "http://localhost:8080/login/oauth2/code/tanzu-local-authorization-server"

 # Here are other examples:

 - "http://127.0.0.1:8081/authorized"

 - "http://127.0.0.1:8082/callback"

 # OPTIONAL: show the "consent" screen on the /oauth2/authorize call. Defaults

to false.

 require-consent: false

 # OPTIONAL: enforce redirect_uri validation. When set to true, Clients may onl

y use one of

 # the redirect_uris defined for this client. Defaults to false.

 validate-redirect-uri: false

 # OPTIONAL: enforce scope validation. When set to true, clients may only reque

st

 # the scopes defined for this client. Defaults to false.

 validate-scope: false

 - client-id: "other-client"

 client-secret: "other-secret"

 client-authentication-methods:

 - "client_secret_basic"

Tanzu Spring

144

 authorization-grant-types:

 - "client_credentials"

Tanzu Spring

145

Tanzu Spring Config Server

VMware Tanzu Spring Config Server is an externalized configuration server based on the open-source
Spring Cloud Config project. It provides a centralized server for delivering external configuration properties
to an application, and acts as a central source for managing this configuration across deployment
environments. Tanzu Spring Config Server supports a number of backends, including Git and Hashicorp
Vault.

Tanzu Spring Config Server is released as a standalone JAR and a capability:

Tanzu Spring Config Server - standalone JAR

Tanzu Spring Config Server - capability

Tanzu Spring Config Server - standalone JAR

The Tanzu Spring Config Server Standalone JAR requires Java 17 or higher.

Tanzu Spring Config Server Release Notes

Installing Spring Config Server

Enabling Mutual TLS (mTLS)

Running the Config Server

Configuring the Config Server

Enabling Client Applications

Config Server Release Notes

These are the release notes for VMware Tanzu Spring Config Server Standalone JAR

v1.0.0

Release Date: May 22, 2024

This is the first release.

Installing Spring Config Server

This topic provides instructions for installing the Tanzu Spring Config Server standalone JAR.

1. Follow the instructions at Broadcom Support to obtain access to the Spring Enterprise
Subscription, and save the secure token for access.

Tanzu Spring

146

https://support.broadcom.com/group/ecx/productdownloads?subfamily=Spring%20Enterprise%20Subscription

2. Download Config Server from the Spring Artifact Repository:
https://packages.broadcom.com/artifactory/spring-

enterprise/com/vmware/tanzu/spring/tanzu-config-server/.

3. Create a YAML file that contains the configuration for the Config Server. This file can be named
anything you like and be located anywhere on the filesystem.

At minimum, this configuration file should specify a Git repository from which to serve
configuration. For example:

spring:

 cloud:

 config:

 server:

 git:

 uri: https://github.com/spring-cloud-services-samples/cook-config

See Configuring the Spring Config Server Standalone JAR for more configuration options.

4. Specify the location of the configuration file by setting an environment variable named
SPRING_CONFIG_ADDITIONAL_LOCATION or SPRING_CONFIG_IMPORT. Assuming that the
configuration file is named config-server.yml and is placed in a directory named samples, you
could set SPRING_CONFIG_IMPORT by running:

export SPRING_CONFIG_IMPORT=samples/config-server.yml

5. The Spring Cloud Config Server JAR file is an executable JAR file. Using Java 17+ or higher, run
the Config Server:

java -jar config-server-1.0.0.jar

6. After a few moments, the Config Server should be running and listening on port 8888 (unless you
set a different value for server.port in the configuration) file. To verify, you can use curl to fetch
the configuration for the default application and profile by running:

curl localhost:8888/application/default

Enabling Mutual TLS (mTLS)

This topic describes how to configure the Tanzu Spring Config Server standalone JAR to use mTLS.

1. Create the configuration file to include SSL properties.

server:

 ssl:

 bundle: server

 client-auth: NEED

spring:

 cloud:

 config:

 server:

 git:

Tanzu Spring

147

 uri: https://github.com/spring-cloud-services-samples/cook-config

 ssl:

 bundle:

 pem:

 server:

 keystore:

 certificate: samples/tls/server/tls.crt

 private-key: samples/tls/server/tls.key

 truststore:

 certificate: samples/tls/ca/tls.crt

2. Set SPRING_CONFIG_ADDITIONAL_LOCATION or SPRING_CONFIG_IMPORT to reference this
configuration, as described in Installing Config Server.

3. Run the application as an executable JAR file as described in Installing Config Server:

java -jar config-server-1.0.0.jar

4. Test it by supplying certificates and keys in the request:

curl \

 --cacert samples/tls/ca/tls.crt \

 --cert samples/tls/client/tls.crt \

 --key samples/tls/client/tls.key \

 https://localhost:8888/cook/default/main

Running the Config Server

This topic shows you how to run the Spring Config Server standalone JAR.

1. Create an image from the Config Server JAR file. The easiest way to do this is to use the pack
command:

pack build tanzu/config-server:1.0.0 \

 --path ./config-server-tsr-1.0.0.jar \

 --builder paketobuildpacks/builder:tiny

If you will be running the image on an ARM host (such as an Apple machine with an Apple
chipset), you must use a different builder:

pack build tanzu/config-serverx:1.0.0 \

 --path ./config-server-tsr-1.0.0.jar \

 --builder dashaun/builder:tiny

Alternatively, you can create an image using docker build. Create a Dockerfile with the
following contents:

FROM openjdk:17-jdk

COPY config-server-1.0.0.jar cs.jar

ENTRYPOINT ["java", "-jar", "cs.jar"]

This assumes that the JAR file is in the directory where you will create the image. Using
the Docker CLI, create the image with this command (substitute “tanzu” with your

Tanzu Spring

148

organization’s Docker repository name):

docker build -t "tanzu/config-server:1.0.0" .

2. Create a configuration file. The example shown here is the minimum required. Your configuration is
expected to be more comprehensive.

spring:

 cloud:

 config:

 server:

 git:

 uri: https://github.com/spring-cloud-services-samples/cook-config

3. Make the configuration available to the container. The most basic way of doing this is to use a bind
mount to mount a directory containing the configuration YAML file. For example, if the config-
server.yml file is in a directory name csconfig, start the container by running:

docker run -d \

 -p 8888:8888 \

 --mount type=bind,source="$(pwd)"/csconfig,target=/csconfig

 -e SPRING_CONFIG_IMPORT='/csconfig/config-server.yml'

 tanzu/config-server:1.0.0

This starts the container, forwards the local port 8888 to the Config Server’s port 8888 running in
the container, and sets the SPRING_CONFIG_IMPORT environment variable to reference the mounted
configuration file.

4. Test it by making a request to the Config Server using curl:

curl localhost:8888/application/default

Configuring the Config Server

This topic describes the VMware Tanzu Spring Config Server standalone JAR properties you can add to
your configuration YAML file.

In addition to configuring a Git URI, Config Server offers other properties for configuring Config Server to
suit your needs. Place these configuration settings in your configuration YAML file.

Configuring Git Backends

All of the properties for configuring Git repositories are prefixed with spring.cloud.config.server.git.

Property Default Description

clone-on-start false (start on
demand)

Flag to indicate that the repository should be cloned on startup

refresh-rate 0 (always
refresh)

Time (in seconds) between refreshes of the git repository

basedir Base directory for local working copy of repository

Tanzu Spring

149

Property Default Description

clone-submodules false Flag to indicate that the submodules in the repository should be cloned

default-label The default label to be used with the remote repository

delete-untracked-
branches

false Flag to indicate that the branch should be deleted locally if its origin tracked branch
was removed

force-pull false Flag to indicate that the repository should force pull

host-key Valid SSH host key

host-key-algorithm One of ssh-dss, ssh-rsa, ssh-ed25519, ecdsa-sha2-nistp256, ecdsa-sha2-
nistp384, or ecdsa-sha2-nistp521. Must be set if hostKey is set.

ignore-local-ssh-
settings

false If true, use property-based instead of file-based SSH config.

known-hosts-file Location of .known_hosts file

order The order of the environment repository

passphrase Passphrase for unlocking your SSH private key

password Password for authentication with remote repository

preferred-
authentications

Override server authentication method order

private-key Valid SSH private key

proxy HTTP proxy configuration

repos Map of repository identifier to location and other properties

search-paths Search paths to use in local working copy

skip-ssl-validation false Flag to indicate that SSL certificate validation should be bypassed when
communicating with a repository served over an HTTPS connection

strict-host-key-
checking

true If false, ignore errors with the host key

timeout 5 Timeout (in seconds) for obtaining HTTP or SSH connection (if applicable)

try-master-branch true To maintain compatibility, try the master branch in addition to main when we try to
fetch the default branch

username Username for authentication with remote repository

Configuring Vault Backends

When using Vault backends, you must enable the vault profile:

spring:

 profiles:

 active: vault

Tanzu Spring

150

If you are planning to use Vault backends alongside Git backends, you must explicitly enable both the
vault profile and the git profile:

spring:

 profiles:

 active: vault,git

All properties for configuring Hashicorp Vault as a backend are prefixed with
spring.cloud.config.server.vault. For example, here is a simple Vault configuration that references a
Vault server running on the same machine as the Config Server:

spring:

 profiles:

 active: vault

 cloud:

 config:

 server:

 vault:

 host: 127.0.0.1

 port: 8200

What follows are the properties you can use to configure a Vault backend for Config Server.

Property Default Description

backend secret Vault backend.

default-key applicatio
n

The key in vault shared by all applications

host 127.0.0.1 Vault host

kv-version 1 Value to indicate which version of Vault kv backend is used

namespace The value of the Vault X-Vault-Namespace header

path-to-key KV2 API required data after mount-path

port 8200 Vault port

profile-separator ,
(comma)

Vault profile separator

proxy HTTP proxy configuration

scheme http Vault scheme

skip-ssl-validation false Flag to indicate that SSL certificate validation should be bypassed when communicating
with a repository

ssl.cert-auth-path cert Mount path of the TLS cert authentication backend

ssl.key-store Trust store that holds certificates and private keys

ssl.key-store-
password

Password used to access the key store

sss.trust-store Trust store that holds SSL certificates

Tanzu Spring

151

Property Default Description

ssl.trust-
store.password

Password used to access the trust store

timeout 5 Timeout (in seconds) for obtaining HTTP connection

token Static Vault token

Configuring Composite Backends

If you want to configure two or more of the same kind of backend (for example, three Git backends, two
Vault backends, or some combination of Git and Vault where there are two or more of one of them), you
must use the composite configuration style.

For example, suppose that you have configured one each of a Git and Vault backend like this:

spring:

 profiles:

 active: git, vault

 cloud:

 config:

 server:

 git:

 uri: https://github.com/spring-cloud-services-samples/cook-config

 order: 2

 vault:

 host: 127.0.0.1

 port: 8200

 order: 1

And then you decide to add another Git backend to the configuration. The
spring.cloud.config.server.git properties are already set, so you cannot set another backend using
the same properties. Instead, you need to set the spring.cloud.config.server.composite property with
an array of backends as shown in the following example:

spring:

 profiles:

 active: git, vault

 cloud:

 config:

 server:

 composite:

 - type: git

 uri: https://github.com/someorg/other-config

 order: 3

 - type: git

 uri: https://github.com/spring-cloud-services-samples/cook-config

 order: 2

 - type: vault

 host: 127.0.0.1

 port: 8200

 order: 1

Tanzu Spring

152

Enabling Client Applications

This topic contains instructions for enabling client applications.

Spring Boot applications can use the Tanzu Spring Config Server Standalone JAR by including the client
dependency in their builds and configuring connection details to access the running Config Server. This
results in externalized configuration, served by the Tanzu Spring Config Server standalone JAR, being
injected into the Spring Environment, and being available to inject into application properties annotated with
@Value, or in beans that are annotated with @ConfigurationProperties.

Adding the Client Dependency to your Build

To use a Tanzu Spring Config Server, a client app must include the necessary client dependency.
Specifically, you must add the Spring Cloud OSS Config Server Client dependency to your project’s build.
In addition, you must add the Spring Cloud Bill of Materials (BOM) into the build’s dependency
management.

For Gradle builds

For a Gradle build, the Config Server Client dependency looks like this:

implementation 'org.springframework.cloud:spring-cloud-starter-config'

The dependency management entry should look similar to this:

dependencyManagement {

 imports {

 mavenBom "org.springframework.cloud:spring-cloud-dependencies:${springCloudVersio

n}"

 }

}

Set the springCloudVersion property to reference the latest Spring Cloud OSS version:

ext {

 set('springCloudVersion', "2023.0.1")

}

For Maven builds

If your project is built with Maven, add the following dependency to the <dependencies> section of the
build:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-config</artifactId>

</dependency>

The dependency management section should include the Spring Cloud BOM:

<dependencyManagement>

 <dependencies>

Tanzu Spring

153

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dependencies</artifactId>

 <version>${spring-cloud.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

And you can set the spring-cloud.version property in the <properties> section like this:

<properties>

 <spring-cloud.version>2023.0.1</spring-cloud.version>

</properties>

Specifying Connection Details

If Config Server is running locally and listening on port 8888, you can add the following entry to the
application.properties file for your application:

spring.config.import=optional:configserver:

The optional: prefix is optional, but if it is omitted, this will cause the Config Client to fail if it is unable to
connect to the Config Server.

If Config Server is running elsewhere, you must set spring.config.import to reference the location of the
Tanzu Spring Config Server. For example, if Tanzu Spring Config Server is running on a host named
myconfigserver and listening on port 8888, here is how to set spring.config.import:

spring.config.import=optional:configserver:http://myconfigserver:8888

Enabling TLS (mTLS) Authentication

If Tanzu Spring Config Server requires TLS authentication, you can configure the client side certificates and
trust store in application.properties with the following entries:

spring.config.import=optional:configserver:http://myconfigserver:8888

spring.cloud.config.tls.enabled: true

spring.cloud.config.tls.key-store: <path-to-key-store>

spring.cloud.config.tls.key-store-type: PKCS12

spring.cloud.config.tls.key-store-password: <key-store-password>

spring.cloud.config.tls.password: <key-password>

spring.cloud.config.tls.trust-store: <path-of-trust-store>

spring.cloud.config.tls.trust-store-type: PKCS12

spring.cloud.config.tls.trust-store-password: <trust-store-password>

Modify the values of these properties with the specific details for your client certification and trust store.

For more information about configuring the Spring Cloud Config Client, see the OSS Spring Cloud Config
Client documentation.

Tanzu Spring

154

https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#_spring_cloud_config_client

Tanzu Spring Config Server - capability

The Tanzu Spring Config Server capability is available on Tanzu Platform.

Overview

Release Notes

Installing Spring Config Server

Create Config Server Resources

Configure Workloads to use Config Server Resources

Create App Config Resources

Configure Workloads to use App Config Resources

Overview

ConfigServer is an externalized configuration server based on the open-source Spring Cloud Config
project. ConfigServer provides a centralized server for delivering external configuration properties to an
application, and a central source for managing this configuration across deployment environments.
ConfigServer is designed to be consumed by Spring Boot applications.

AppConfig is an adapter that is sed to allow non-Spring applications (e.g. Golang, Python, NodeJS, …) to
easily consume externalized configuration from ConfigServer as well.

Both ConfigServer and AppConfig are best consumed with service bindings. For more information, see
the Tanzu Platform for Kubernetes documentation.

Capacity requirements

Each node of the capability’s controller requires:

64 MiB of memory

10 m of vCPU

with limits of:

128 MiB of memory

500 m of vCPU

You can scale the controller horizontally for higher availability.

Release Notes

These are the release notes for the VMware Tanzu Spring Config Server Capability config-
server.spring.tanzu.vmware.com

v1.2.0

Release Date: Nov 25, 2024

AppConfig projects fields type and provider

Tanzu Spring

155

https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform-for-kubernetes/saas/tanzu-platform-k8s/concepts-about-services.html

v1.1.0

Release Date: Nov 1, 2024

Introduces AppConfig

v1.0.0

Release Date: April 29, 2024

This is the first release.

Installing Spring Config Server

The capability config-server.spring.tanzu.vmware.com is not installed on cluster groups by default.
The capability can be installed from the Tanzu Platform UI.

Create Config Server Resources

This topic tells you about the options available when creating a ConfigServer resource.

Detect available parameters

Examine the available parameters when creating a ConfigServer resource by running:

tanzu space use <your-space>

export KUBECONFIG=~/.config/tanzu/kube/config

kubectl explain configserver.spec

For example:

$ kubectl explain configserver.spec

KIND: ConfigServer

VERSION: config-server.spring.tanzu.vmware.com/v1alpha1

RESOURCE: spec <Object>

Tanzu Spring

156

DESCRIPTION:

 ConfigServerSpec defines the desired state of ConfigServer

FIELDS:

 backends <[]Object> -required-

 List of backends used by the config server. There must be at least one

 backend for config-server.

 replicas <integer> -required-

 Number of desired config server replicas. Defaults to 1.

 resources <Object>

 The config server compute resource requirements

 tls <Object>

 TLS configuration for the config server

Here is a second example describing the Git configuration fields:

kubectl explain configserver.spec.backends.git

For example:

$ kubectl explain configserver.spec.backends.git

KIND: ConfigServer

VERSION: config-server.spring.tanzu.vmware.com/v1alpha1

RESOURCE: git <Object>

DESCRIPTION:

 Git backend configuration

FIELDS:

 basicAuth <Object>

 For HTTP/S addresses, the credentials used to access the Git repository if

 protected by HTTP Basic authentication. Optional.

 defaultLabel <string>

 The default label used if a request is received without a label. Optional:

 Defaults to main.

 paths <[]string>

 A list of patterns used to search for configuration-containing

 subdirectories in the Git repository. Optional.

 proxy <Object>

 The Proxy configuration for the Git repository. Optional.

 skipTLSVerify <boolean>

 For HTTPS addresses, whether to skip validation of the SSL certificate on

 the Git repository's server. Optional: Defaults to false.

 ssh <Object>

 For SSH addresses, the credentials used to access the Git repository if

 protected by SSH. Optional.

 timeout <integer>

Tanzu Spring

157

 Number of seconds that the config server will wait to acquire a connection

 to the Git repository. Optional: Defaults to 5 seconds.

 ttl <integer>

 Number of seconds to wait before updating the repository clone from Git

 repository, when a client requests configuration. Optional: Defaults to 0

 seconds. Default value (0) means the repository clone is updated every time

 a client requests configuration. Negative value means the repository clone

 will not be updated, after it is cloned.

 uri <string> -required-

 The HTTP/S or SSH address of the Git repository.

Create a ConfigServer using the Tanzu CLI

To create a ConfigServer resource using the tanzu CLI for using the Spring Cloud Services demo
application cook in a Space called cook:

1. Use the Space:

tanzu space use cook

2. Create a ConfigServer resource by using the following YAML definition:

tanzu service create ConfigServer/cook-server --parameter backends='[{git: {ur

i: https://github.com/spring-cloud-services-samples/cook-config}}]' --parameter

replicas=1 --skip-bind-prompt

3. Open egress to the ConfigServer’s github.com backend by running:

tanzu egress create github.com --host github.com --port 443 --protocol HTTPS

This step is only required if the egress.tanzu.vmware.com capability is present in your Space.
This opens egress to https://github.com for all workloads in the Space. For more information
about egress, see the egress documentation.

4. Get the ConfigServer resource by running:

tanzu service get ConfigServer/cook-server

Create a ConfigServer using a YAML file

To create a ConfigServer resource using a YAML file for using the Spring Cloud Services demo application
cook in a Space called cook:

1. Create a ConfigServer resource by using the following YAML definition:

apiVersion: config-server.spring.tanzu.vmware.com/v1alpha1

kind: ConfigServer

metadata:

 name: cook-server

spec:

Tanzu Spring

158

https://github.com/spring-cloud-services-samples/cook
https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform-for-kubernetes/saas/tanzu-platform-k8s/concepts-about-egress.html
https://github.com/spring-cloud-services-samples/cook

 replicas: 1

 backends:

 - git:

 uri: https://github.com/spring-cloud-services-samples/cook-config

2. Save the YAML definition as configserver.yaml.

3. Create an EgressPoint to the ConfigServer’s github.com backend by running:

apiVersion: networking.tanzu.vmware.com/v1alpha1

kind: EgressPoint

metadata:

 name: github.com

spec:

 targets:

 - hosts: ["github.com"]

 port:

 number: 443

 protocol: HTTPS

This step is only required if the egress.tanzu.vmware.com capability is present in your Space.
This opens egress to https://github.com for all workloads in the Space. For more information
about egress, see the egress documentation.

4. Save the YAML definition as egress.yaml.

5. Use the Space:

tanzu space use cook

6. Export the Space’s kubeconfig:

export KUBECONFIG=~/.config/tanzu/kube/config

7. Apply the YAML definitions by running:

kubectl apply -f configserver.yaml -f egress.yaml

8. Get the ConfigServer resource by running:

kubectl get configserver cook-server

Configure Workloads to use Config Server Resources

This topic tells you how to configure Tanzu Platform workloads running Spring Boot applications to connect
to ConfigServer resources.

Prepare

1. Deploy your workload. For instructions, see Deploy your first application using Spaces.

2. Create a ConfigServer resource. For instructions, see Create ConfigServer resources.

Tanzu Spring

159

https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform-for-kubernetes/saas/tanzu-platform-k8s/concepts-about-egress.html
https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform-for-kubernetes/saas/tanzu-platform-k8s/getting-started-deploy-app-to-space.html

Bind the workload to the ConfigServer

Bind your ContainerApp to the ConfigServer with the tanzu CLI:

tanzu services bind ConfigServer/<config-server-name> ContainerApp/<workload-name> --a

s config

Create App Config Resources

This topic tells you about options when creating an AppConfig resource. An AppConfig depends on a
ConfigServer. The AppConfig’s service binding Secret will contain the configuration key-by-key.

Note that the configuration an AppConfig represents is limited to 1MB in size. That’s due to the size
limitation of Secret.

Detect available parameters

Examine the available parameters when creating an AppConfig resource by running:

tanzu space use <your-space>

export KUBECONFIG=~/.config/tanzu/kube/config

kubectl explain appconfig.spec

For example:

GROUP: config-server.spring.tanzu.vmware.com

KIND: AppConfig

VERSION: v1alpha1

FIELD: spec <Object>

DESCRIPTION:

 AppConfigSpec defines the desired state of AppConfig

FIELDS:

 applications <[]string>

 <no description>

 configServerRef <Object> -required-

 LocalObjectReference contains enough information to let you locate the

 referenced object inside the same namespace.

 labels <[]string>

 <no description>

 profiles <[]string>

 <no description>

The only required field is configServerRef, which identifies the ConfigServer it should pull configuration
from.

Create an AppConfig using the Tanzu CLI

Tanzu Spring

160

https://kubernetes.io/docs/concepts/configuration/secret/#restriction-data-size

Prerequisite: Create a ConfigServer. See Create ConfigServer Resources.

Create an AppConfig resource using the tanzu CLI in a Space called cook for a ConfigServer called
cook-server:

1. Use the Space:

tanzu space use cook

2. Create an AppConfig resource that identifies the ConfigServer:

tanzu service create AppConfig/cook-config --parameter configServerRef='{name:

cook-server}' --skip-bind-prompt

3. Get the AppConfig resource by running:

tanzu service get AppConfig/cook-config

Create an AppConfig using a YAML file

Prerequisite: Create a ConfigServer. See Create ConfigServer Resources.

Create an AppConfig resource using the tanzu CLI in a Space called cook for a ConfigServer called
cook-server:

1. Create a ConfigServer resource by using the following YAML definition:

apiVersion: config-server.spring.tanzu.vmware.com/v1alpha1

kind: AppConfig

metadata:

 name: cook-config

spec:

 configServerRef:

 name: cook-server

2. Save the YAML definition as appconfig.yaml.

3. Use the Space:

tanzu space use cook

4. Export the Space’s kubeconfig:

export KUBECONFIG=~/.config/tanzu/kube/config

5. Apply the YAML definitions by running:

kubectl apply -f appconfig.yaml

6. Get the ConfigServer resource by running:

kubectl get appconfig cook-config

Tanzu Spring

161

Configure Workloads to use App Config Resources

This topic tells you how to configure Tanzu Platform workloads running non-Spring applications to use
AppConfig for externalized configuration.

Prepare

1. Deploy your workload. For instructions, see Deploy your first application using Spaces.

2. Create a ConfigServer resource. For instructions, see Create ConfigServer resources.

3. Create an AppConfig resource targeting the ConfigServer. For instructions, see Create AppConfig
resources.

Bind the workload to the AppConfig

You can bind your ContainerApp to the ConfigServer using the tanzu CLI:

tanzu services bind AppConfig/<app-config-name> ContainerApp/<workload-name> --as appc

onfig

Read configuration

The AppConfig will be projected onto the workload’s filesystem using service bindings.

The service bindings community maintains libraries for several platforms to programmatically access
service bindings. See language-specific libraries. These libraries can be used by non-Spring applications to
read the configuration provided by an AppConfig.

For example, if the workload is implemented in Go it could use github.com/nebhale/client-go:

package main

import (

"encoding/json"

"fmt"

"os"

"github.com/nebhale/client-go/bindings"

)

var config map[string]any

func main() {

b := bindings.FromServiceBindingRoot()

b = bindings.Filter(b, "appconfig")

if len(b) != 1 {

return nil, fmt.Errorf("expected one appconfig, but got %d", len(b))

}

c, ok := bindings.Get(b[0], "__appconfig.json")

if !ok {

return nil, fmt.Errorf("expected entry __appconfig.json")

}

Tanzu Spring

162

https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform-for-kubernetes/saas/tanzu-platform-k8s/getting-started-deploy-app-to-space.html
https://servicebinding.io/application-developer/#language-specific-libraries
https://github.com/nebhale/client-go

if err := json.Unmarshal([]byte(c), &config); err != nil {

return nil, fmt.Errorf("unable to unmarshal appconfig: %w\n", err)

}

// use config ...

}

Troubleshooting

ConfigServer is not becoming ready

It is possible that a ConfigServer in a Space does not become ready because the egress to its backend is
locked.

Open egress to the ConfigServer backends by running:

tanzu egress create github.com --host github.com --port 443 --protocol HTTPS

This step is only required if the egress.tanzu.vmware.com capability is present in your Space and there
are no egress points for the backends yet.

Note that this opens egress to https://github.com for all workloads in the Space. For more information
about egress, see the egress documentation.

Tanzu Spring

163

https://techdocs.broadcom.com/us/en/vmware-tanzu/platform/tanzu-platform-for-kubernetes/saas/tanzu-platform-k8s/concepts-about-egress.html

Tanzu Spring Service Registry

VMware Tanzu Service Registry is a service registry based on the open-source Spring Cloud Netflix Eureka
Server project. It provides a registry through which applications can register themselves and be discovered
by other applications in a microservice architecture.

Tanzu Service Registry requires Java 17 or higher.

Tanzu Service Registry Release Notes

Installing Tanzu Service Registry

Configuring Tanzu Service Registry

Enabling Mutual TLS (mTLS)

Running the Service Registry

Enabling Client Applications

Tanzu Service Registry Release Notes

These are the release notes for VMware Tanzu Service Registry.

v1.0.0

Release Date: July 24, 2024

This is the first release.

Installing Tanzu Service Registry

This topic provides instructions for installing Tanzu Service Registry.

1. Follow the instructions at Broadcom Support to obtain access to the Spring Enterprise
Subscription, and save the secure token for access.

2. Download Service Registry from the Spring Artifact Repository:
https://packages.broadcom.com/artifactory/spring-

enterprise/com/vmware/tanzu/spring/tanzu-service-registry/.

3. The Spring Cloud Service Registry JAR file is an executable JAR file. Using Java 17+ or higher, run
the Service Registry:

java -jar tanzu-service-registry-1.0.0.jar

After a few moments, the Service Registry should be running and listening on port 8761 (unless you
set a different value for server.port in the configuration file). To verify, you can open the Service

Tanzu Spring

164

https://support.broadcom.com/group/ecx/productdownloads?subfamily=Spring%20Enterprise%20Subscription
http://localhost:8761/

Registry dashboard.

Alternatively, you can test the installation using curl to make a request to the apps endpoint:

curl localhost:8761/eureka/apps

Configuring Tanzu Service Registry

This topic describes the VMware Tanzu Service Registry properties you can add to your configuration
YAML file to enable peer awareness.

By default, Tanzu Service Registry is configured to work in standalone mode, in which it is the only
instance. But it can be made even more resilient and available by running multiple instances and asking
them to register with each other.

To enable peer awareness, add the following to your configuration YAML:

spring:

 profiles: peer1

eureka:

 instance:

 hostname: <peer-1-hostname>

 client:

 serviceUrl:

 defaultZone: https://<peer-2-hostname>/eureka/

spring:

 profiles: peer2

eureka:

 instance:

 hostname: <peer-2-hostname>

 client:

 serviceUrl:

 defaultZone: https://<peer-1-hostname>/eureka/

In this configuration there are two peers, configured under profiles named “peer1” and “peer2”. When running
the two instances, you must activate the “peer1” profile for one of the instances and the “peer2” profile for
the other instance. One way to do this is to specify the active profiles in an environment variable.

For example, to activate the “peer1” profile, set the following environment variable on the peer-1-host:

export SPRING_PROFILES_ACTIVE=peer1

Likewise, set the following environment variable on the peer-2-host:

export SPRING_PROFILES_ACTIVE=peer2

When running using Docker, this can be accomplished by specifying the environment variable with the -e
flag. For example, when starting the first peer:

docker run -d \

 -p 8761:8761 \

 --mount type=bind,source="$(pwd)"/srconfig,target=/srconfig

Tanzu Spring

165

http://localhost:8761/

 -e SPRING_CONFIG_IMPORT='/srconfig/service-registry.yml'

 -e SPRING_PROFILES_ACTIVE=peer1

 tanzu/service-registry:1.0.0

When there are 3 or more peers, the configuration is similar, but can be streamlined to set the default zone
in the default profile:

eureka:

 client:

 serviceUrl:

 defaultZone: https://<peer-1-host>/eureka/,http://<peer-2-host>/eureka/,http://<

peer-3-host>/eureka/

spring:

 profiles: peer1

eureka:

 instance:

 hostname: peer1

spring:

 profiles: peer2

eureka:

 instance:

 hostname: peer2

spring:

 profiles: peer3

eureka:

 instance:

 hostname: peer3

You can add as many peers as desired to a system. As long as they are connected to each other by at
least one edge, they will synchronize their registrations with each other.

Enabling Mutual TLS (mTLS)

This topic describes how to configure Service Registry to use mTLS.

1. Create the configuration file to include SSL properties.

server:

 ssl:

 bundle: server

 client-auth: NEED

spring:

 ssl:

 bundle:

 pem:

 server:

 keystore:

 certificate: samples/tls/server/tls.crt

 private-key: samples/tls/server/tls.key

Tanzu Spring

166

 truststore:

 certificate: samples/tls/ca/tls.crt

2. Set SPRING_CONFIG_ADDITIONAL_LOCATION or SPRING_CONFIG_IMPORT to reference this
configuration, as described in Installing Service Registry.

3. Run the application as an executable JAR file as described in Installing Service Registry:

java -jar tanzu-service-registry-1.0.0.jar

4. Test it by supplying certificates and keys in a request to the app’s endpoint:

curl \

 --cacert samples/tls/ca/tls.crt \

 --cert samples/tls/client/tls.crt \

 --key samples/tls/client/tls.key \

 https://localhost:8761/eureka/apps

Running the Service Registry

This topic shows you how to run the Tanzu Service Registry.

1. Create an image from the Service Registry JAR file. The easiest way to do this is to use the pack
command:

pack build tanzu/service-registry:1.0.0 \

 --path ./tanzu-service-registry-1.0.0.jar \

 --builder paketobuildpacks/builder:tiny

If you will be running the image on an ARM host (such as an Apple machine with an Apple
chipset), you must use a different builder:

pack build tanzu/service-registry:1.0.0 \

 --path ./tanzu-service-registry-1.0.0.jar \

 --builder dashaun/builder:tiny

Alternatively, you can create an image using docker build. Create a Dockerfile with the
following contents:

FROM openjdk:17-jdk

COPY tanzu-service-registry-1.0.0.jar sr.jar

ENTRYPOINT ["java", "-jar", "sr.jar"]

This assumes that the JAR file is in the directory where you will create the image. Using
the Docker CLI, create the image with this command (substitute “tanzu” with your
organization’s Docker repository name):

docker build -t "tanzu/service-registry:1.0.0" .

2. Optional. Create a configuration file. The Service Registry is packaged with minimal configuration.
If you need to provide additional configuration, see Configuring the Service Registry.

3. Start the container by running:

Tanzu Spring

167

docker run -d \

 -p 8761:8761 \

 tanzu/service-registry:1.0.0

This starts the container and forwards the local port 8761 to the Service Registry’s port 8761
running in the container.

If you created a configuration file, you must make the configuration available to the container. The
most basic way of doing this is to use a bind mount to mount a directory containing the
configuration YAML file. For example, if the service-registry.yml file is in a directory name
srconfig, start the container by running:

docker run -d \

 -p 8761:8761 \

 --mount type=bind,source="$(pwd)"/srconfig,target=/srconfig

 -e SPRING_CONFIG_IMPORT='/srconfig/service-registry.yml'

 tanzu/service-registry:1.0.0

In addition to starting the container and forwarding ports, this mounts the configuration from the
local filesystem to the container’s filesystem and sets the SPRING_CONFIG_IMPORT environment
variable to reference the mounted configuration file.

4. Test it by opening the Service Registry dashboard in a browser. Alternatively, use curl to make a
request to the apps endpoint:

curl localhost:8761/eureka/apps

Enabling Client Applications

This topic contains instructions for enabling client applications.

Spring Boot applications can use the Tanzu Service Registry by including the client dependency in their
builds and configuring connection details to access the running Service Registry. This results in the client
application registering itself with Service Registry at startup and periodically refreshing that registration to
indicate to the Service Registry that it is still available. It also enables the application to discover other
services by name from the Service Registry.

Adding the Client Dependency to your Build

To use a Tanzu Service Registry, a client app must include the necessary client dependency. Specifically,
you must add the Spring Cloud OSS Eureka Discovery Client dependency to your project’s build. In
addition, you must add the Spring Cloud Bill of Materials (BOM) into the build’s dependency management.

For Gradle builds

For a Gradle build, the Service Registry Client dependency looks like this:

implementation 'org.springframework.cloud:spring-cloud-starter-netflix-eureka-client'

The dependency management entry should look similar to this:

Tanzu Spring

168

http://localhost:8761/

dependencyManagement {

 imports {

 mavenBom "org.springframework.cloud:spring-cloud-dependencies:${springCloudVersio

n}"

 }

}

Set the springCloudVersion property to reference the latest Spring Cloud OSS version:

ext {

 set('springCloudVersion', "2023.0.3")

}

For Maven builds

If your project is built with Maven, add the following dependency to the <dependencies> section of the
build:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>

</dependency>

The dependency management section should include the Spring Cloud BOM:

<dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-dependencies</artifactId>

 <version>${spring-cloud.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

Set the spring-cloud.version property in the <properties> section like this:

<properties>

 <spring-cloud.version>2023.0.3</spring-cloud.version>

</properties>

Specifying Connection Details

The Eureka Discovery Client defaults to connecting to the Service Registry at localhost port 8761. If
Service Registry is running locally and listening on port 8761, you do not need to provide connection
information. But you should specify, at minimum, the application name. In this example, the name of your
application is my-application.

spring.application.name=my-application

Tanzu Spring

169

This is the name that the application will be registered under in the Service Registry.

If Service Registry is running on a different host and/or port, you must specify the location of the Service
Registry in the configuration for your application:

eureka.client.service-url.defaultZone=http://my-eureka:9761/eureka

Enabling TLS (mTLS) Authentication

If Tanzu Service Registry requires TLS authentication, you can configure the client side certificates and
trust store in application.properties with the following entries:

eureka.client.tls.enabled=true

eureka.client.tls.key-store=<path-to-key-store>

eureka.client.tls.key-store-type=PKCS12

eureka.client.tls.key-store-password=<key-store-password>

eureka.client.tls.key-password=<key-password>

eureka.client.tls.trust-store-type=PKCS12

eureka.client.tls.trust-store=<path-of-trust-store>

eureka.client.tls.trust-store-password=<trust-store-password>

Modify the values of these properties with the specific details for your client certification and trust store.

For more information about configuring the Spring Cloud Eureka Discovery Client, see the OSS Spring
Cloud Service Discovery documentation.

Tanzu Spring

170

https://cloud.spring.io/spring-cloud-netflix/reference/html/#service-discovery-eureka-clients

VMware Tanzu Distribution of OpenJDK

VMware Tanzu Distribution of OpenJDK

VMware Tanzu OpenJDK

Broadcom distributes the BellSoft Liberica distribution of OpenJDK® under the name VMware Tanzu
Distribution of OpenJDK.

Installation

BellSoft Liberica is available on Broadcom Support portal.

To install it:

1. Download the latest binary from Broadcom Support portal.

2. Extract the compressed file into that directory using the following command:

3. Add this version of Java to your PATH:

4. Verify that the Java version is correct:

Support Lifecycle

The following table shows the end of support dates for the currently supported JDKs:

Version End of Support

OpenJDK 21 March 2032

OpenJDK 17 March 2030

OpenJDK 11 March 2027

OpenJDK 8 March 2031

VMware Tanzu OpenJDK end of support dates follow those set by BellSoft Liberica. For more information
about the BellSoft support lifecycle, see the Liberica JDK Support Roadmap.

$ tar xf bellsoft-jdk11.0.7+10-linux-amd64.tar.gz

$ export PATH=$PWD/jdk-11.0.7/bin:$PATH

$ java -version

Tanzu Spring

171

https://bell-sw.com/pages/downloads/#/java-11-lts
https://openjdk.java.net/
https://support.broadcom.com/group/ecx/productdownloads?subfamily=Pivotal%20Distribution%20of%20OpenJDK
https://support.broadcom.com/group/ecx/productdownloads?subfamily=Pivotal%20Distribution%20of%20OpenJDK
https://bell-sw.com/pages/roadmap/

Java and OpenJDK are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Tanzu Spring

172

Tanzu Spring

173

Spring Enterprise Subscription

Spring Enterprise Subscription provides access to supported releases of Spring Boot that are no longer
under OSS support and are within the “Enterprise” support window.

The following guides can help you get access to the artifact repository where Enterprise supported releases
of Spring Boot (and other Spring projects that may be made available in the future) are stored:

Guide for Artifact Repository Administrators

Guide for Application Developers

For more information about the specific OSS and Enterprise release support dates for Spring Boot, go to
the Spring Boot project support page. Release notes, reference documentation, and Javadoc for Spring
Enterprise Subscription releases are indexed at enterprise.spring.io. Release-specific documentation for
many Spring releases is also published in a docs zip file within the repository tree.

Spring Enterprise Subscription for Artifact Repository
Administrators

This guide walks you through how artifact repository administrators can synchronize Spring Enterprise
supported releases from https://packages.broadcom.com/artifactory/spring-enterprise to their internal
artifact repository. After the Spring Enterprise artifacts are synced, application development teams with
access to your internal artifact repository can include them as dependencies in their projects.

Prerequisites

Access to the Spring Enterprise Subscription artifact repository is available to entitled customers through
the Broadcom Customer Support Portal with at least one entitlement in:

VMware Tanzu Spring

VMware Tanzu Platform for Cloud Foundry (formerly Tanzu Application Service)

VMware Tanzu Platform for Kubernetes

Additional Prerequisites for Air-Gapped Environments

For air-gapped environments in which external access is tightly controlled, you must add the following
domains to your allow list:

packages.broadcom.com

JFrog Artifactory domains

Tanzu Spring

174

https://spring.io/projects/spring-boot#support
https://enterprise.spring.io/
https://packages.broadcom.com/artifactory/spring-enterprise
https://support.broadcom.com/
https://jfrog.com/help/r/artifactory-what-urls-ip-s-i-should-whitelist-when-working-with-direct-cloud-storage-download-in-jfrog-saas/artifactory-what-urls/ip-s-i-should-whitelist-when-working-with-direct-cloud-storage-download-in-jfrog-saas

Accessing Spring Enterprise Subscription Artifact
Repositories

To access the Spring Enterprise Subscription artifact repository:

1. Log in to the Broadcom Customer Support Portal.

2. Ensure that Tanzu is selected in the top navigation bar of the site.

3. On the left side navigation, select My Downloads.

Tanzu Spring

175

https://access.broadcom.com/

4. On the My Downloads page, search for “Spring Enterprise.”

5. Retrieve the access token by expanding the Token Access row and clicking on the green icon,
after which you are presented with an instructions pop-up.

The download instructions walk you through how to save your access token, along with steps for
setting up your own artifact repository to sync the artifacts from Spring Enterprise Subscription.
The access token is valid for 6 months by default.

6. Save your access token value in a local file. Click the Save File button on the instructions pop-up
and select the save location. This access token serves as a password for your email address or as
a bearer token for API requests. When authenticating to Spring Enterprise Subscription artifact
repository URL directly, use the value access_token in the saved JSON file.

Spring Enterprise Subscription repository details

URL: https://packages.broadcom.com/artifactory/spring-enterprise/

Type: Maven (or Gradle)

Description: Repository GA Spring Enterprise Releases

Adding a Remote Repository in Artifactory

JFrog Artifactory and Sonatype Nexus are two commonly used artifact repository managers. The following
sections describe how to add Release artifacts to your local Artifactory server.

Reference: https://jfrog.com/help/r/jfrog-artifactory-documentation/remote-repositories

Permissions: Artifactory Platform Administrator access required

Tanzu Spring

176

https://packages.broadcom.com/artifactory/spring-enterprise/
https://jfrog.com/help/r/jfrog-artifactory-documentation/remote-repositories

To configure a remote repository:

1. Go to the Administration module.

2. Go to Repositories and select Add Repositories, then select Remote Repository.

3. On that page, select type Maven, and provide the configuration values listed in the following
sections.

Configuring Release Artifacts

The following configuration values can be used to cache the Spring Enterprise Subscription release artifacts
in Artifactory:

1. Configure:

Repository Key: spring-enterprise-mvn-remote (or preferred on-premise naming
convention)

URL: https://packages.broadcom.com/artifactory/spring-enterprise

User Name: email address for this account

Password / Access Token: the value with the save Access Token file for attribute
access_token

2. Click Test to confirm that the credentials are working.

Repository Layout: maven-2-default

Remote Layout Mapping: maven-2-default

3. Ensure that Handle Releases is selected.

Maven versus Gradle

The Spring Enterprise artifact repository is of type Maven but can be used by both Maven and Gradle
clients, as the Spring team does today.

Artifactory Smart Repository

Artifactory platform administrators might see an alert saying, “Artifactory Smart Repository Detected” when
testing connectivity of a new remote repository to packages.broadcom.com.

If you want to assist the Spring team by delivering a limited set of repository statistics back upstream to
packages.broadcom.com, you can enable all settings for this feature, but this is not required.

Advanced Settings

Advanced settings for the remote repository depend largely on individual platform requirements for storage,
network, local compliance and regulations, and so on. These settings are outside the scope of Spring
Enterprise Subscription support.

When storage is a concern, the Spring Team generally sets a non-zero value for Unused Artifacts Cleanup
Period (Hr) for remote snapshot and other repositories.

Downstream Repository Replications

Tanzu Spring

177

https://packages.broadcom.com/artifactory/spring-enterprise

Pull replication is a convenient way to proactively populate a remote cache. This avoids waiting for artifacts
to arrive when first requested, reduces traffic on the Spring Enterprise server, and is permitted from
packages.broadcom.com. The ability to configure downstream repository replication is available in the
JFrog Artifactory commercial offering and Sonatype Nexus Proxy Repository.

Reference Documentation

Release notes, reference documentation, and Javadoc for Spring Enterprise Subscription releases are
available at enterprise.spring.io. Release-specific documentation for many Spring releases is also published
in a docs zip file in the repository tree.

Spring Enterprise Subscription for Application Developers

This guide describes how application developers can access Spring Enterprise releases directly from Spring
Enterprise Subscription artifact repositories when developing their applications.

Prerequisites

You must retrieve an access token to use Spring Enterprise Subscription repository artifacts during build
execution. Follow the steps in Accessing Spring Enterprise Subscription Artifact Repositories to retrieve
your access token.

Using Spring Enterprise Artifacts

Follow the steps below to configure your Maven and Gradle build environments to access Spring Enterprise
Subscription artifacts during build execution. There are several ways to do this.

Option 1: Create a shared Maven profile for all Maven and Gradle
projects

Using this approach prevents modification of the configuration of any of your existing Maven and Gradle
repositories.

This configuration will be especially useful when you want to upgrade your Spring applications using the
commercial OpenRewrite recipes with Spring Application Advisor.

Add the following to your $HOME/.m2/settings.xml for the environment in which you are executing these
builds, and replace [email] and [access_token] with your user name for Spring Enterprise Subscription
and your valid access token, respectively:

 <servers>

 <server>

 <id>spring-enterprise-subscription</id>

 <username>[email]</username>

 <password>[access_token]</password>

 </server>

 </servers>

 <profiles>

 <profile>

 <id>spring-enterprise</id>

 <activation>

Tanzu Spring

178

https://help.sonatype.com/repomanager3/nexus-repository-administration/repository-management#RepositoryManagement-ProxyRepository
https://enterprise.spring.io/

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>spring-enterprise-subscription</id>

 <url>https://packages.broadcom.com/artifactory/spring-enterprise</url>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-enterprise-subscription</id>

 <url>https://packages.broadcom.com/artifactory/spring-enterprise</url>

 </pluginRepository>

 </pluginRepositories>

 </profile>

 </profiles>

 <activeProfiles>

 <activeProfile>spring-enterprise</activeProfile>

 </activeProfiles>

If you do not know if your Gradle repositories are using mavenLocal() to load the local Maven settings,
VMware recommends storing the following configuration for Gradle in
$HOME/.gradle/init.d/init.gradle:

apply plugin: SpringEnterpriseRepositoryPlugin

class SpringEnterpriseRepositoryPlugin implements Plugin<Gradle> {

 void apply(Gradle gradle) {

 gradle.allprojects { project ->

 project.repositories {

 // add the Spring enterprise repository

 maven {

 name "SPRING_ENTERPRISE_REPO"

 url "https://packages.broadcom.com/artifactory/spring-enterprise"

 credentials {

 username "[email]"

 password "[password]"

 }

 authentication {

 basic(BasicAuthentication)

 }

 }

 }

 }

 }

}

Option 2: Configure a single Maven repository

To track changes in the Maven repositories, consider doing the following:

1. Add the credentials for the Spring Enterprise Subscription artifact repository in your
$HOME/.m2/settings.xml. This is an example:

Tanzu Spring

179

 <servers>

 <server>

 <id>spring-enterprise-subscription</id>

 <username>[email]</username>

 <password>[access_token]</password>

 </server>

 </servers>

Replace [email] and [access_token] with your user name for Spring Enterprise Subscription and
your valid access token, respectively.

2. Define new Maven repositories in the pom.xml of the repository consumers.

...

 <repositories>

 <repository>

 <id>spring-enterprise-subscription</id>

 <url>https://packages.broadcom.com/artifactory/spring-enterprise</url

>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-enterprise-subscription</id>

 <url>https://packages.broadcom.com/artifactory/spring-enterprise</url

>

 </pluginRepository>

 </pluginRepositories>

...

Option 3: Configure a single Gradle repository

To configure the Spring Enterprise Subscription artifact repository for Gradle, the build environment must be
configured with access as both a dependency repository and a plug-in repository.

Add the following to your settings.gradle for the environment in which you are executing these builds,
and replace [email] and [access_token] with your user name for Spring Enterprise Subscription and your
valid access token, respectively.

pluginManagement {

 repositories {

 maven {

 url "https://packages.broadcom.com/artifactory/spring-enterprise"

 credentials {

 username “[email]“

 password “[access_token]”

 }

 authentication {

 basic(BasicAuthentication)

 }

 }

 mavenCentral()

 }

}

dependencyResolutionManagement {

Tanzu Spring

180

 repositories {

 maven {

 url "https://packages.broadcom.com/artifactory/spring-enterprise"

 credentials {

 username “[email]“

 password “[access_token]”

 }

 authentication {

 basic(BasicAuthentication)

 }

 }

 mavenCentral()

 }

}

Option 4: Create a remote Maven repository for the Spring
Enterprise Subscription artifact repository

If you have an enterprise Maven repository, you can configure it to work as a proxy. For configuration
instructions, see Adding a Remote Repository in Artifactory. In this case, there will be no changes to any of
your configurations, and the Spring Enterprise supported artifacts will be available for the enterprise.

Tanzu Spring

181

	Contents
	VMware Tanzu Spring
	Extended support
	Spring Enterprise Subscription artifact repository
	Spring Application Advisor
	Enterprise Spring Boot Extensions
	Spring Cloud Enterprise Components
	For Tanzu Platform for Cloud Foundry (formerly called Tanzu Application Service)
	For Kubernetes

	VMware Tanzu tc Server
	VMware Distribution of OpenJDK
	Reference Information

	Apache HTTP Server built by VMware
	Releases
	Downloading 2.4.63-20250218195700
	Downloading 2.4.62-20240904201630
	Downloading 2.4.62-20240828181951
	Downloading 2.4.62-20240717172113
	Downloading 2.4.61-20240710201530
	Downloading 2.4.61-20240703145951

	About Apache HTTP Server
	RELEASE-NOTES-2-4-61-20240703200552
	Package Description
	Downloading
	Included Components
	RHEL 7 Users
	RHEL 8 Users
	RHEL 9 Users
	Ubuntu 20.04 and 22.04 Users
	Microsoft Windows Users
	Installation
	Instance Creation

	RELEASE-NOTES-2-4-61-20240710201530
	Package Description
	Downloading
	Included Components
	RHEL 7 Users
	RHEL 8 Users
	RHEL 9 Users
	Ubuntu 20.04 and 22.04 Users
	Microsoft Windows Users
	Installation
	Instance Creation

	RELEASE-NOTES-2-4-62-20240717172113
	Package Description
	Downloading
	Included Components
	RHEL 7 Users
	RHEL 8 Users
	RHEL 9 Users
	Ubuntu 20.04 and 22.04 Users
	Microsoft Windows Users
	Installation
	Instance Creation

	RELEASE-NOTES-2-4-62-20240828181951
	Package Description
	Downloading
	Included Components
	RHEL 7 Users
	RHEL 8 Users
	RHEL 9 Users
	Ubuntu 20.04 and 22.04 Users
	Microsoft Windows Users
	Installation
	Instance Creation

	RELEASE-NOTES-2-4-62-20240904201630
	Package Description
	Downloading
	Included Components
	RHEL 7 Users
	RHEL 8 Users
	RHEL 9 Users
	Ubuntu 20.04 and 22.04 Users
	Microsoft Windows Users
	Installation
	Instance Creation

	RELEASE-NOTES 2.4.63-20250218195700
	Package Description
	Downloading
	Included Components
	RHEL 7 Users
	RHEL 8 Users
	RHEL 9 Users
	Ubuntu 20.04 and 22.04 Users
	Microsoft Windows Users
	Installation
	Instance Creation

	Spring Application Advisor
	Release Notes
	1.1.2
	1.1.1
	1.1.0
	1.0.4
	1.0.3
	1.0.2
	1.0.1
	1.0.0
	0.0.9
	0.0.8
	0.0.7
	0.0.6

	What is Spring Application Advisor?
	How is Spring Application Advisor Different From Other Solutions?
	Spring Boot Migrator
	OpenRewrite

	How Spring Application Advisor Works
	The native CLI
	The Server

	Spring Application Advisor How-to Guides
	Upgrade Spring Boot from 2.7 to 3.4
	Upgrade an Spring application that uses a custom Spring Boot Starter
	Spring Application Advisor Architecture
	How Spring Application Advisor fits into your software delivery lifecycle (SDLC)
	Architecture diagram

	Installing Spring Application Advisor
	Download and Start the Spring Application Advisor Server

	Running Spring Application Advisor CLI
	Download the CLI
	Configure the Maven settings to download the commercial recipes
	Produce a build configuration
	Publish a build configuration
	Generate an upgrade plan
	Apply an upgrade plan from your local machine
	Increasing memory limit

	Enable continuous and incremental upgrades

	Integrating Spring Application Advisor with CI/CD
	Integrating with Spring Application Advisor in GitLab Enterprise
	Step 1: Create a Custom GitLab Runner using GKE
	Step 2: Invoke the Advisor CLI from the Custom GitLab Runner
	Step 3: Check that your GitLab pipelines run Spring Application Advisor at the end

	Integrating with Spring Application Advisor in GitHub Enterprise
	Integrating with Spring Application Advisor in Jenkins
	Using Pipeline Templates

	Integrating with Other SaaS CI/CD Tools
	Set up for script execution
	GitHub Actions

	Custom upgrades using Spring Application Advisor
	Configure the upgrade plan for shared libraries
	Update the server configuration
	Providing upgrade mappings stored in the file system
	Providing upgrade mappings located in a Git repository
	Providing upgrade mappings located in JFrog Artifactory
	Providing upgrade mappings using HTTP

	Running commercial recipes using OpenRewrite tools
	Upgrade to Spring Boot 3.0.x
	Upgrade to Spring Boot 3.1.x
	Upgrade to Spring Boot 3.2.x
	Upgrade to Spring Boot 3.3.x
	Upgrade to Spring Boot 3.4.x
	Upgrade to Spring Security 5.8.x
	Upgrade to Spring Security 6.0.x
	Upgrade to Spring Security 6.1.x
	Upgrade to Spring Security 6.2.x
	Upgrade to Spring Security 6.3.x
	Upgrade to Spring Data 3.0.x
	Upgrade to Spring Framework 6.0.x
	Upgrade to Spring Framework 6.1.x
	Upgrade to Spring Framework 6.2.x
	Migrate from JAXRS to Spring Boot 3.3
	Design Principles

	Spring Boot 3.0.x Recipes
	Spring Boot 3.1.x Recipes
	Spring Boot 3.2.x Recipes
	Spring Boot 3.3.x Recipes
	Spring Boot 3.4.x Recipes
	Spring Data 3.0.x Recipes
	Spring Framework 6.0.x Recipes
	Spring Framework 6.1.x Recipes
	Spring Framework 6.2.x Recipes
	Spring Security 5.8.x Recipes
	Portfolio Analysis with the Tanzu Platform UI
	Connect the server to the Tanzu Platform UI
	Using Tanzu Platform UI SaaS
	Using Tanzu Platform UI Self-Managed

	Troubleshooting Spring Application Advisor
	Why does the apply command report that there are no upgrade plans if there are outdated Spring dependencies?
	Why is my project unable to resolve the new Spring Maven Plugin?
	Why is Spring Application Advisor unable to resolve the bom.json file?
	Why am I seeing the “Blocked mirror for repositories” error when applying the upgrade plan?
	Why can’t I see my repository in the Tanzu Platform?

	Spring Application Advisor CLI Reference
	advisor build-config get
	Usage
	Supported options
	Examples

	advisor build-config publish
	Usage
	Supported options
	Examples

	advisor upgrade-plan get
	Usage
	Supported options
	Examples

	advisor upgrade-plan apply
	Usage
	Supported options
	Examples

	advisor mapping build (Experimental)
	Usage
	Supported options
	Examples

	advisor
	Usage
	Supported options

	Enterprise Spring Boot Governance Starter
	Spring Boot Governance Starter Release Notes
	v1.3.0
	v1.2.0
	v1.1.0
	v1.0.0

	Overview
	Minimum Requirements
	Predefined Validations
	Server TLS Validation
	Client TLS Validation
	OIDC Clients

	Getting Started
	Prerequisites
	Configure the Dependency
	Gradle
	Maven

	Run the Application
	Enable TLS with a PKCS12 keystore (non-compliant)
	Enable TLS with a BCFKS certificate (compliant)
	The Governance Actuator Endpoint
	Filter by tag
	Exposing the Endpoint
	Viewing the Governance Actuator Endpoint

	Library Configuration Options
	Governance Specifications
	Preconfigured Governance Specifications
	TNZSPEC-0001
	TNZSPEC-0002
	TNZSPEC-0003
	TNZSPEC-0004
	TNZSPEC-0005
	TNZSPEC-0006
	TNZSPEC-0007
	TNZSPEC-0008
	TNZSPEC-0009
	TNZSPEC-0010
	TNZSPEC-0011
	TNZSPEC-0012
	TNZSPEC-0013
	TNZSPEC-0014
	TNZSPEC-0015
	TNZSPEC-0016
	TNZSPEC-0017
	TNZSPEC-0018
	TNZSPEC-0019
	TNZSPEC-0020
	TNZSPEC-0100
	TNZSPEC-0101
	TNZSPEC-0102
	TNZSPEC-0103
	TNZSPEC-0104
	TNZSPEC-0105
	TNZSPEC-0106
	TNZSPEC-0107

	Custom Standards Support and Validation
	Define a GovernanceSpecProvider bean to add custom specs
	​Create a custom class to store application details
	Define a GovernanceDetailsScanner bean
	Create a GovernanceValidator bean to run your validation rules
	Validation State

	Run the application

	Troubleshooting
	Problems running your app as a fat jar
	Cause
	Solution

	Tanzu Local Authorization Server
	Local Authorization Server Release Notes
	v1.0.1
	v1.0.0
	v0.0.7
	0.0.6

	Getting Started with Local Authorization Server
	Role-based or attribute-based access control using OpenID claim
	TLS support

	Using Local Authorization Server in your Tests
	Using in tests with Testcontainers
	Using Local Authorization Server in tests with Spring Boot Testjars

	Reference Configuration
	Tanzu Spring Config Server
	Tanzu Spring Config Server - standalone JAR
	Config Server Release Notes
	v1.0.0

	Installing Spring Config Server
	Enabling Mutual TLS (mTLS)
	Running the Config Server
	Configuring the Config Server
	Configuring Git Backends
	Configuring Vault Backends
	Configuring Composite Backends

	Enabling Client Applications
	Adding the Client Dependency to your Build
	For Gradle builds
	For Maven builds

	Specifying Connection Details
	Enabling TLS (mTLS) Authentication

	Tanzu Spring Config Server - capability
	Overview
	Capacity requirements

	Release Notes
	v1.2.0
	v1.1.0
	v1.0.0

	Installing Spring Config Server
	Create Config Server Resources
	Detect available parameters
	Create a ConfigServer using the Tanzu CLI
	Create a ConfigServer using a YAML file

	Configure Workloads to use Config Server Resources
	Prepare
	Bind the workload to the ConfigServer

	Create App Config Resources
	Detect available parameters
	Create an AppConfig using the Tanzu CLI
	Create an AppConfig using a YAML file

	Configure Workloads to use App Config Resources
	Prepare
	Bind the workload to the AppConfig
	Read configuration

	Troubleshooting
	ConfigServer is not becoming ready

	Tanzu Spring Service Registry
	Tanzu Service Registry Release Notes
	v1.0.0

	Installing Tanzu Service Registry
	Configuring Tanzu Service Registry
	Enabling Mutual TLS (mTLS)
	Running the Service Registry
	Enabling Client Applications
	Adding the Client Dependency to your Build
	For Gradle builds
	For Maven builds

	Specifying Connection Details
	Enabling TLS (mTLS) Authentication

	VMware Tanzu Distribution of OpenJDK
	VMware Tanzu OpenJDK
	Installation
	Support Lifecycle

	Spring Enterprise Subscription
	Spring Enterprise Subscription for Artifact Repository Administrators
	Prerequisites
	Additional Prerequisites for Air-Gapped Environments

	Accessing Spring Enterprise Subscription Artifact Repositories
	Spring Enterprise Subscription repository details
	Adding a Remote Repository in Artifactory
	Configuring Release Artifacts
	Maven versus Gradle
	Artifactory Smart Repository
	Advanced Settings
	Downstream Repository Replications

	Reference Documentation

	Spring Enterprise Subscription for Application Developers
	Prerequisites
	Using Spring Enterprise Artifacts
	Option 1: Create a shared Maven profile for all Maven and Gradle projects
	Option 2: Configure a single Maven repository
	Option 3: Configure a single Gradle repository
	Option 4: Create a remote Maven repository for the Spring Enterprise Subscription artifact repository

