Tanzu Application Catalog services

Bitnami package for RabbitMQ

Last Updated March 07, 2025

What is RabbitMQ?

RabbitMQ is an open source general-purpose message broker that is designed for consistent, highly-available messaging scenarios (both synchronous and asynchronous).

Overview of RabbitMQ Trademarks: This software listing is packaged by Bitnami. The respective trademarks mentioned in the offering are owned by the respective companies, and use of them does not imply any affiliation or endorsement.

TL;DR

docker run --name rabbitmq REGISTRY_NAME/bitnami/rabbitmq:latest

You can find the default credentials and available configuration options in the Environment Variables section.

Why use Bitnami Images?

  • Bitnami closely tracks upstream source changes and promptly publishes new versions of this image using our automated systems.
  • With Bitnami images the latest bug fixes and features are available as soon as possible.
  • Bitnami containers, virtual machines and cloud images use the same components and configuration approach - making it easy to switch between formats based on your project needs.
  • All our images are based on minideb -a minimalist Debian based container image that gives you a small base container image and the familiarity of a leading Linux distribution- or scratch -an explicitly empty image-.
  • All Bitnami images available in Docker Hub are signed with Notation. Check this post to know how to verify the integrity of the images.
  • Bitnami container images are released on a regular basis with the latest distribution packages available.

Looking to use RabbitMQ in production? Try VMware Tanzu Application Catalog, the commercial edition of the Bitnami catalog.

How to deploy RabbitMQ in Kubernetes?

Deploying Bitnami applications as Helm Charts is the easiest way to get started with our applications on Kubernetes. Read more about the installation in the Bitnami RabbitMQ Chart GitHub repository.

Bitnami containers can be used with Kubeapps for deployment and management of Helm Charts in clusters.

Why use a non-root container?

Non-root container images add an extra layer of security and are generally recommended for production environments. However, because they run as a non-root user, privileged tasks are typically off-limits. Learn more about non-root containers in our docs.

Supported tags and respective Dockerfile links

Learn more about the Bitnami tagging policy and the difference between rolling tags and immutable tags in our documentation page.

You can see the equivalence between the different tags by taking a look at the tags-info.yaml file present in the branch folder, i.e bitnami/ASSET/BRANCH/DISTRO/tags-info.yaml.

Subscribe to project updates by watching the bitnami/containers GitHub repo.

Get this image

The recommended way to get the Bitnami RabbitMQ Docker Image is to pull the prebuilt image from the Docker Hub Registry.

docker pull REGISTRY_NAME/bitnami/rabbitmq:latest

To use a specific version, you can pull a versioned tag. You can view the list of available versions in the Docker Hub Registry.

docker pull REGISTRY_NAME/bitnami/rabbitmq:[TAG]

If you wish, you can also build the image yourself by cloning the repository, changing to the directory containing the Dockerfile and executing the docker build command. Remember to replace the APP, VERSION and OPERATING-SYSTEM path placeholders in the example command below with the correct values.

git clone https://github.com/bitnami/containers.git
cd bitnami/APP/VERSION/OPERATING-SYSTEM
docker build -t REGISTRY_NAME/bitnami/APP:latest .

Persisting your application

If you remove the container all your data will be lost, and the next time you run the image the database will be reinitialized. To avoid this loss of data, you should mount a volume that will persist even after the container is removed.

For persistence you should mount a directory at the /bitnami/rabbitmq/mnesia path. If the mounted directory is empty, it will be initialized on the first run.

docker run \
    -v /path/to/rabbitmq-persistence:/bitnami/rabbitmq/mnesia \
    REGISTRY_NAME/bitnami/rabbitmq:latest

NOTE: As this is a non-root container, the mounted files and directories must have the proper permissions for the UID 1001.

Connecting to other containers

Using Docker container networking, a RabbitMQ server running inside a container can easily be accessed by your application containers.

Containers attached to the same network can communicate with each other using the container name as the hostname.

Using the Command Line

In this example, we will create a RabbitMQ client instance that will connect to the server instance that is running on the same docker network as the client.

Step 1: Create a network

docker network create app-tier --driver bridge

Step 2: Launch the RabbitMQ server instance

Use the --network app-tier argument to the docker run command to attach the RabbitMQ container to the app-tier network.

docker run -d --name rabbitmq-server \
    --network app-tier \
    REGISTRY_NAME/bitnami/rabbitmq:latest

Step 3: Launch your RabbitMQ client instance

Finally we create a new container instance to launch the RabbitMQ client and connect to the server created in the previous step:

docker run -it --rm \
    --network app-tier \
    REGISTRY_NAME/bitnami/rabbitmq:latest rabbitmqctl -n rabbit@rabbitmq-server status

Using a Docker Compose file

When not specified, Docker Compose automatically sets up a new network and attaches all deployed services to that network. However, we will explicitly define a new bridge network named app-tier. In this example we assume that you want to connect to the RabbitMQ server from your own custom application image which is identified in the following snippet by the service name myapp.

version: '2'

networks:
  app-tier:
    driver: bridge

services:
  rabbitmq:
    image: 'REGISTRY_NAME/bitnami/rabbitmq:latest'
    networks:
      - app-tier
  myapp:
    image: 'YOUR_APPLICATION_IMAGE'
    networks:
      - app-tier

:

  1. Please update the YOUR_APPLICATION_IMAGE placeholder in the above snippet with your application image
  2. In your application container, use the hostname rabbitmq to connect to the RabbitMQ server

Launch the containers using:

docker-compose up -d

Configuration

Environment variables

Customizable environment variables

NameDescriptionDefault Value
RABBITMQ_CONF_FILERabbitMQ configuration file.${RABBITMQ_CONF_DIR}/rabbitmq.conf
RABBITMQ_DEFINITIONS_FILEWhether to load external RabbitMQ definitions. This is incompatible with setting the RabbitMQ password securely./app/load_definition.json
RABBITMQ_SECURE_PASSWORDWhether to set the RabbitMQ password securely. This is incompatible with loading external RabbitMQ definitions.no
RABBITMQ_UPDATE_PASSWORDWhether to update the password on container restart.no
RABBITMQ_CLUSTER_NODE_NAMERabbitMQ cluster node name. When specifying this, ensure you also specify a valid hostname as RabbitMQ will fail to start otherwise.nil
RABBITMQ_CLUSTER_PARTITION_HANDLINGRabbitMQ cluster partition recovery mechanism.ignore
RABBITMQ_DISK_FREE_RELATIVE_LIMITDisk relative free space limit of the partition on which RabbitMQ is storing data.1.0
RABBITMQ_DISK_FREE_ABSOLUTE_LIMITDisk absolute free space limit of the partition on which RabbitMQ is storing data (takes precedence over the relative limit).nil
RABBITMQ_ERL_COOKIEErlang cookie to determine whether different nodes are allowed to communicate with each other.nil
RABBITMQ_VM_MEMORY_HIGH_WATERMARKHigh memory watermark for RabbitMQ to block publishers and prevent new messages from being enqueued. Can be specified as an absolute or relative value (as percentage or value between 0 and 1).nil
RABBITMQ_LOAD_DEFINITIONSWhether to load external RabbitMQ definitions. This is incompatible with setting the RabbitMQ password securely.no
RABBITMQ_MANAGEMENT_BIND_IPRabbitMQ management server bind IP address.0.0.0.0
RABBITMQ_MANAGEMENT_PORT_NUMBERRabbitMQ management server port number.15672
RABBITMQ_MANAGEMENT_ALLOW_WEB_ACCESSAllow web access to RabbitMQ management portal for RABBITMQ_USERNAMEfalse
RABBITMQ_NODE_NAMERabbitMQ node name.rabbit@localhost
RABBITMQ_USE_LONGNAMEWhether to use fully qualified names to identify nodesfalse
RABBITMQ_NODE_PORT_NUMBERRabbitMQ node port number.5672
RABBITMQ_NODE_TYPERabbitMQ node type.stats
RABBITMQ_VHOSTRabbitMQ vhost./
RABBITMQ_VHOSTSList of additional virtual host (vhost).nil
RABBITMQ_CLUSTER_REBALANCERebalance the RabbitMQ Cluster.false
RABBITMQ_CLUSTER_REBALANCE_ATTEMPTSMax attempts for the rebalance check to run100
RABBITMQ_USERNAMERabbitMQ user name.user
RABBITMQ_PASSWORDRabbitMQ user password.bitnami
RABBITMQ_FORCE_BOOTForce a node to start even if it was not the last to shut downno
RABBITMQ_ENABLE_LDAPEnable the LDAP configuration.no
RABBITMQ_LDAP_TLSEnable secure LDAP configuration.no
RABBITMQ_LDAP_SERVERSComma, semi-colon or space separated list of LDAP server hostnames.nil
RABBITMQ_LDAP_SERVERS_PORTLDAP servers port.389
RABBITMQ_LDAP_USER_DN_PATTERNDN used to bind to LDAP in the form cn=$${username},dc=example,dc=org.nil
RABBITMQ_NODE_SSL_PORT_NUMBERRabbitMQ node port number for SSL connections.5671
RABBITMQ_SSL_CACERTFILEPath to the RabbitMQ server SSL CA certificate file.nil
RABBITMQ_SSL_CERTFILEPath to the RabbitMQ server SSL certificate file.nil
RABBITMQ_SSL_KEYFILEPath to the RabbitMQ server SSL certificate key file.nil
RABBITMQ_SSL_PASSWORDRabbitMQ server SSL certificate key password.nil
RABBITMQ_SSL_DEPTHMaximum number of non-self-issued intermediate certificates that may follow the peer certificate in a valid certification path.nil
RABBITMQ_SSL_FAIL_IF_NO_PEER_CERTWhether to reject TLS connections if client fails to provide a certificate.no
RABBITMQ_SSL_VERIFYWhether to enable peer SSL certificate verification. Valid values: verify_none, verify_peer.verify_none
RABBITMQ_MANAGEMENT_SSL_PORT_NUMBERRabbitMQ management server port number for SSL/TLS connections.15671
RABBITMQ_MANAGEMENT_SSL_CACERTFILEPath to the RabbitMQ management server SSL CA certificate file.$RABBITMQ_SSL_CACERTFILE
RABBITMQ_MANAGEMENT_SSL_CERTFILEPath to the RabbitMQ server SSL certificate file.$RABBITMQ_SSL_CERTFILE
RABBITMQ_MANAGEMENT_SSL_KEYFILEPath to the RabbitMQ management server SSL certificate key file.$RABBITMQ_SSL_KEYFILE
RABBITMQ_MANAGEMENT_SSL_PASSWORDRabbitMQ management server SSL certificate key password.$RABBITMQ_SSL_PASSWORD
RABBITMQ_MANAGEMENT_SSL_DEPTHMaximum number of non-self-issued intermediate certificates that may follow the peer certificate in a valid certification path, for the RabbitMQ management server.nil
RABBITMQ_MANAGEMENT_SSL_FAIL_IF_NO_PEER_CERTWhether to reject TLS connections if client fails to provide a certificate for the RabbitMQ management server.yes
RABBITMQ_MANAGEMENT_SSL_VERIFYWhether to enable peer SSL certificate verification for the RabbitMQ management server. Valid values: verify_none, verify_peer.verify_peer

Read-only environment variables

NameDescriptionValue
RABBITMQ_VOLUME_DIRPersistence base directory./bitnami/rabbitmq
RABBITMQ_BASE_DIRRabbitMQ installation directory./opt/bitnami/rabbitmq
RABBITMQ_BIN_DIRRabbitMQ executables directory.${RABBITMQ_BASE_DIR}/sbin
RABBITMQ_DATA_DIRRabbitMQ data directory.${RABBITMQ_VOLUME_DIR}/mnesia
RABBITMQ_CONF_DIRRabbitMQ configuration directory.${RABBITMQ_BASE_DIR}/etc/rabbitmq
RABBITMQ_DEFAULT_CONF_DIRRabbitMQ default configuration directory.${RABBITMQ_BASE_DIR}/etc/rabbitmq.default
RABBITMQ_CONF_ENV_FILERabbitMQ configuration file for environment variables.${RABBITMQ_CONF_DIR}/rabbitmq-env.conf
RABBITMQ_HOME_DIRRabbitMQ home directory.${RABBITMQ_BASE_DIR}/.rabbitmq
RABBITMQ_LIB_DIRRabbitMQ lib directory.${RABBITMQ_BASE_DIR}/var/lib/rabbitmq
RABBITMQ_INITSCRIPTS_DIRRabbitMQ init scripts directory./docker-entrypoint-initdb.d
RABBITMQ_LOGS_DIRRabbitMQ logs directory.${RABBITMQ_BASE_DIR}/var/log/rabbitmq
RABBITMQ_PLUGINS_DIRRabbitMQ plugins directory.${RABBITMQ_BASE_DIR}/plugins
RABBITMQ_MOUNTED_CONF_DIRRabbitMQ directory for mounted configuration files.${RABBITMQ_VOLUME_DIR}/conf
RABBITMQ_DAEMON_USERRabbitMQ system user name.rabbitmq
RABBITMQ_DAEMON_GROUPRabbitMQ system user group.rabbitmq
RABBITMQ_MNESIA_BASEPath to RabbitMQ mnesia directory.$RABBITMQ_DATA_DIR
RABBITMQ_COMBINED_CERT_PATHPath to the RabbitMQ server SSL certificate key file.${RABBITMQ_COMBINED_CERT_PATH:-/tmp/rabbitmq_combined_keys.pem}

When you start the rabbitmq image, you can adjust the configuration of the instance by passing one or more environment variables either on the docker-compose file or on the docker run command line. If you want to add a new environment variable:

  • For docker-compose add the variable name and value under the application section in the docker-compose.yml file present in this repository: :
rabbitmq:
  ...
  environment:
    - RABBITMQ_PASSWORD=my_password
  ...
  • For manual execution add a -e option with each variable and value.

Setting up a cluster

Using Docker Compose

This is the simplest way to run RabbitMQ with clustering configuration:

Step 1: Add a stats node in your docker-compose.yml

Copy the snippet below into your docker-compose.yml to add a RabbitMQ stats node to your cluster configuration.

version: '2'

services:
  stats:
    image: bitnami/rabbitmq
    environment:
      - RABBITMQ_NODE_TYPE=stats
      - RABBITMQ_NODE_NAME=rabbit@stats
      - RABBITMQ_ERL_COOKIE=s3cr3tc00ki3
    ports:
      - '15672:15672'
    volumes:
      - 'rabbitmqstats_data:/bitnami/rabbitmq/mnesia'

Note: The name of the service (stats) is important so that a node could resolve the hostname to cluster with. (Note that the node name is rabbit@stats)

Step 2: Add a queue node in your configuration

Update the definitions for nodes you want your RabbitMQ stats node cluster with.

  queue-disc1:
    image: bitnami/rabbitmq
    environment:
      - RABBITMQ_NODE_TYPE=queue-disc
      - RABBITMQ_NODE_NAME=rabbit@queue-disc1
      - RABBITMQ_CLUSTER_NODE_NAME=rabbit@stats
      - RABBITMQ_ERL_COOKIE=s3cr3tc00ki3
    volumes:
      - 'rabbitmqdisc1_data:/bitnami/rabbitmq/mnesia'

Note: Again, the name of the service (queue-disc1) is important so that each node could resolve the hostname of this one.

We are going to add a ram node too:

  queue-ram1:
    image: bitnami/rabbitmq
    environment:
      - RABBITMQ_NODE_TYPE=queue-ram
      - RABBITMQ_NODE_NAME=rabbit@queue-ram1
      - RABBITMQ_CLUSTER_NODE_NAME=rabbit@stats
      - RABBITMQ_ERL_COOKIE=s3cr3tc00ki3
    volumes:
      - 'rabbitmqram1_data:/bitnami/rabbitmq/mnesia'
Step 3: Add the volume description
volumes:
  rabbitmqstats_data:
    driver: local
  rabbitmqdisc1_data:
    driver: local
  rabbitmqram1_data:
    driver: local

The docker-compose.yml will look like this:

version: '2'

services:
  stats:
    image: bitnami/rabbitmq
    environment:
      - RABBITMQ_NODE_TYPE=stats
      - RABBITMQ_NODE_NAME=rabbit@stats
      - RABBITMQ_ERL_COOKIE=s3cr3tc00ki3
    ports:
      - '15672:15672'
    volumes:
      - 'rabbitmqstats_data:/bitnami/rabbitmq/mnesia'
  queue-disc1:
    image: bitnami/rabbitmq
    environment:
      - RABBITMQ_NODE_TYPE=queue-disc
      - RABBITMQ_NODE_NAME=rabbit@queue-disc1
      - RABBITMQ_CLUSTER_NODE_NAME=rabbit@stats
      - RABBITMQ_ERL_COOKIE=s3cr3tc00ki3
    volumes:
      - 'rabbitmqdisc1_data:/bitnami/rabbitmq/mnesia'
  queue-ram1:
    image: bitnami/rabbitmq
    environment:
      - RABBITMQ_NODE_TYPE=queue-ram
      - RABBITMQ_NODE_NAME=rabbit@queue-ram1
      - RABBITMQ_CLUSTER_NODE_NAME=rabbit@stats
      - RABBITMQ_ERL_COOKIE=s3cr3tc00ki3
    volumes:
      - 'rabbitmqram1_data:/bitnami/rabbitmq/mnesia'

volumes:
  rabbitmqstats_data:
    driver: local
  rabbitmqdisc1_data:
    driver: local
  rabbitmqram1_data:
    driver: local

Configuration file

A custom rabbitmq.conf configuration file can be mounted to the /bitnami/rabbitmq/conf directory. If no file is mounted, the container will generate a default one based on the environment variables. You can also mount on this directory your own advanced.config (using classic Erlang terms) and rabbitmq-env.conf configuration files.

As an alternative, you can also mount a custom.conf configuration file and mount it to the /bitnami/rabbitmq/conf directory. In this case, the default configuation file will be generated and, later on, the settings available in the custom.conf configuration file will be merged with the default ones. For example, in order to override the listeners.tcp.default directive:

Step 1: Write your custom.conf configuation file with the following content

listeners.tcp.default=1337

Step 2: Run RabbitMQ mounting your custom.conf configuation file

docker run -d --name rabbitmq-server \
   -v /path/to/custom.conf:/REGISTRY_NAME/bitnami/rabbitmq/conf/custom.conf:ro \
    REGISTRY_NAME/bitnami/rabbitmq:latest

After that, your changes will be taken into account in the server’s behaviour.

Permission of SSL/TLS certificate and key files

If you bind mount the certificate and key files from your local host to the container, make sure to set proper ownership and permissions of those files:

sudo chown 1001:root <your cert/key files>
sudo chmod 400 <your cert/key files>

Enabling LDAP support

LDAP configuration parameters must be specified if you wish to enable LDAP support for RabbitMQ. The following environment variables are available to configure LDAP support:

  • RABBITMQ_ENABLE_LDAP: Enable the LDAP configuration. Defaults to no.
  • RABBITMQ_LDAP_TLS: Enable secure LDAP configuration. Defaults to no.
  • RABBITMQ_LDAP_SERVERS: Comma, semi-colon or space separated list of LDAP server hostnames. No defaults.
  • RABBITMQ_LDAP_SERVERS_PORT: LDAP servers port. Defaults: 389
  • RABBITMQ_LDAP_USER_DN_PATTERN: DN used to bind to LDAP in the form cn=$${username},dc=example,dc=org.No defaults.

Note: To escape $ in RABBITMQ_LDAP_USER_DN_PATTERN you need to use $$.

Follow these instructions to use the Bitnami Docker OpenLDAP image to create an OpenLDAP server and use it to authenticate users on RabbitMQ:

Step 1: Create a network and start an OpenLDAP server

docker network create app-tier --driver bridge
docker run --name openldap \
  --env LDAP_ADMIN_USERNAME=admin \
  --env LDAP_ADMIN_PASSWORD=adminpassword \
  --env LDAP_USERS=user01,user02 \
  --env LDAP_PASSWORDS=password1,password2 \
  --network app-tier \
  REGISTRY_NAME/bitnami/openldap:latest

Step 3: Create an advanced.config file

To configure authorization, you need to create an advanced.config file, following the clasic config format, and add your authorization rules. For instance, use the file below to grant all users the ability to use the management plugin, but make none of them administrators:

[{rabbitmq_auth_backend_ldap,[
    {tag_queries, [{administrator, {constant, false}},
                   {management,    {constant, true}}]}
]}].

More information at https://www.rabbitmq.com/ldap.html#authorisation.

Step 4: Start RabbitMQ with LDAP support

docker run --name rabbitmq \
  --env RABBITMQ_ENABLE_LDAP=yes \
  --env RABBITMQ_LDAP_TLS=no \
  --env RABBITMQ_LDAP_SERVERS=openldap \
  --env RABBITMQ_LDAP_SERVERS_PORT=1389 \
  --env RABBITMQ_LDAP_USER_DN_PATTERN=cn=$${username},ou=users,dc=example,dc=org \
  --network app-tier \
  -v /path/to/your/advanced.config:/REGISTRY_NAME/bitnami/rabbitmq/conf/advanced.config:ro \
  REGISTRY_NAME/bitnami/rabbitmq:latest

Logging

The Bitnami RabbitMQ Docker image sends the container logs to the stdout. To view the logs:

docker logs rabbitmq

or using Docker Compose:

docker-compose logs rabbitmq

You can configure the containers logging driver using the --log-driver option if you wish to consume the container logs differently. In the default configuration docker uses the json-file driver.

Maintenance

Upgrade this application

Bitnami provides up-to-date versions of RabbitMQ, including security patches, soon after they are made upstream. We recommend that you follow these steps to upgrade your container.

Step 1: Get the updated image

docker pull REGISTRY_NAME/bitnami/rabbitmq:latest

or if you’re using Docker Compose, update the value of the image property to REGISTRY_NAME/bitnami/rabbitmq:latest.

Step 2: Stop and backup the currently running container

Stop the currently running container using the command

docker stop rabbitmq

or using Docker Compose:

docker-compose stop rabbitmq

Next, take a snapshot of the persistent volume /path/to/rabbitmq-persistence using:

rsync -a /path/to/rabbitmq-persistence /path/to/rabbitmq-persistence.bkp.$(date +%Y%m%d-%H.%M.%S)

Step 3: Remove the currently running container

docker rm -v rabbitmq

or using Docker Compose:

docker-compose rm -v rabbitmq

Step 4: Run the new image

Re-create your container from the new image.

docker run --name rabbitmq REGISTRY_NAME/bitnami/rabbitmq:latest

or using Docker Compose:

docker-compose up rabbitmq

Notable changes

3.8.16-debian-10-r28

  • Added several minor changes to make the container compatible with the RabbitMQ Cluster Operator:
    • Add /etc/rabbitmq, /var/log/rabbitmq and /var/lib/rabbitmq as symlinks to the corresponding folders in /opt/bitnami/rabbitmq.
    • Set the RABBITMQ_SECURE_PASSWORD password to no by default. This does not affect the Bitnami RabbitMQ helm as it sets that variable to yes by default.
    • Enable the rabbitmq-prometheus plugin by default.

3.8.9-debian-10-r82

  • Add script to be used as preStop hook on K8s environments. It waits until queues have synchronised mirror before shutting down.

3.8.9-debian-10-r42

  • The environment variable RABBITMQ_HASHED_PASSWORD has not been used for some time. It is now removed from documentation and validation.
  • New boolean environment variable RABBITMQ_LOAD_DEFINITIONS to get behavior compatible with using the load_definitions configuration. Initially this means that the password of RABBITMQ_USERNAME is not changed using rabbitmqctl change_password.

3.8.3-debian-10-r109

  • The default configuration file is created following the “sysctl” or “ini-like” format instead of using Erlang terms. Check Official documentation for more information about supported formats.
  • Migrating data/configuration from unsupported locations is not performed anymore.
  • New environment variable RABBITMQ_FORCE_BOOT to force a node to start even if it was not the last to shut down.
  • New environment variable RABBITMQ_PLUGINS to indicate a list of plugins to enable during the initialization.
  • Add healthcheck scripts to be used on K8s environments.

3.8.0-r17, 3.8.0-ol-7-r26

  • LDAP authentication

3.7.15-r18, 3.7.15-ol-7-r19

  • Decrease the size of the container. Node.js is not needed anymore. RabbitMQ configuration logic has been moved to bash scripts in the rootfs folder.
  • Configuration is not persisted anymore.

3.7.7-r35

  • The RabbitMQ container includes a new environment variable RABBITMQ_HASHED_PASSWORD that allows setting password via SHA256 hash (consult official documentation for more information about password hashes).
  • Please note that password hashes must be generated following the official algorithm. You can use this Python script to generate them.

3.7.7-r19

  • The RabbitMQ container has been migrated to a non-root user approach. Previously the container ran as the root user and the RabbitMQ daemon was started as the rabbitmq user. From now on, both the container and the RabbitMQ daemon run as user 1001. As a consequence, the data directory must be writable by that user. You can revert this behavior by changing USER 1001 to USER root in the Dockerfile.

3.6.5-r2

The following parameters have been renamed:

FromTo
RABBITMQ_ERLANG_COOKIERABBITMQ_ERL_COOKIE
RABBITMQ_NODETYPERABBITMQ_NODE_TYPE
RABBITMQ_NODEPORTRABBITMQ_NODE_PORT
RABBITMQ_NODENAMERABBITMQ_NODE_NAME
RABBITMQ_CLUSTERNODENAMERABBITMQ_CLUSTER_NODE_NAME
RABBITMQ_MANAGERPORTRABBITMQ_MANAGER_PORT

Using docker-compose.yaml

Please be aware this file has not undergone internal testing. Consequently, we advise its use exclusively for development or testing purposes. For production-ready deployments, we highly recommend utilizing its associated Bitnami Helm chart.

If you detect any issue in the docker-compose.yaml file, feel free to report it or contribute with a fix by following our Contributing Guidelines.

Contributing

We’d love for you to contribute to this Docker image. You can request new features by creating an issue or submitting a pull request with your contribution.

Issues

If you encountered a problem running this container, you can file an issue. For us to provide better support, be sure to fill the issue template.

License

Copyright © 2025 Broadcom. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.